Venomous Animals Found to Sometimes Change Their Venom Recipe

The careful study of animals has often yielded positive results for humans. Studying bats helped lead to the development of radar and also is beneficial for flying aircraft better, for example. These findings on venomous animals are important, however, because there’s actually a fair amount of medicine that’s made from venom. Last year scorpions were found to be able to adjust their venom depending on the situation, so this study with sea anemones adds further evidence to venom being different than thought in past years.

For a long time scientists believed that an animal’s venom was consistent over time: once a venomous creature, always a venomous creature. However, through a close study of sea anemones, Dr. Yehu Moran of Hebrew University’s Alexander Silberman Institute of Life Science, found that animals change their venom several times over the course of a lifetime, adapting the potency and recipe of their venom to suit changing predators and aquatic environments.

“Until now, venom research focused mainly on toxins produced by adult animals. However, by studying sea anemones from birth to death, we discovered that animals have a much wider toxin arsenal than previously thought. Their venom evolves to best meet threats from predators and to cope with changing aquatic environments,” explained Dr. Yehu Moran.

To track these changes, Moran’s team labeled the sea anemone’s venom-producing cells and monitored them over time. The researchers also recorded significant interactions that Nematostella had over their lifetime — first as prey and later as predators.

These findings are significant for several reasons. First, venom is often used in medicines and pharmacological compounds. This study suggests that for animals with a complex life cycle there are many venom components that have remained unknown to researchers since, until now, researchers have only studied venom from adult sea anemones, missing out on the unique compounds that exist in larvae venom. These “new” compounds could lead to new medicines and drugs. Second, sea anemones, jellyfish and coral play a significant role in marine environments. A better understanding of their venomous output and effect on marine life ecology is crucial.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s