Prosthetic Human Memory System Implant Successful

It’s shown to boost memory, but the fact of the software-based neural implant being demonstrated seems like it’ll have significant future implications in other ways too.

Scientists at Wake Forest Baptist Medical Center and the University of Southern California (USC) have demonstrated the successful implementation of a prosthetic system that uses a person’s own memory patterns to facilitate the brain’s ability to encode and recall memory.

In the pilot study, published in today’s Journal of Neural Engineering, participants’ short-term memory performance showed a 35 to 37 percent improvement over baseline measurements.

“This is the first time scientists have been able to identify a patient’s own brain cell code or pattern for memory and, in essence, ‘write in’ that code to make existing memory work better, an important first step in potentially restoring memory loss,” said the study’s lead author Robert Hampson, Ph.D., professor of physiology/pharmacology and neurology at Wake Forest Baptist.

The study focused on improving episodic memory, which is the most common type of memory loss in people with Alzheimer’s disease, stroke and head injury. Episodic memory is information that is new and useful for a short period of time, such as where you parked your car on any given day. Reference memory is information that is held and used for a long time, such as what is learned in school.

The researchers enrolled epilepsy patients at Wake Forest Baptist who were participating in a diagnostic brain-mapping procedure that used surgically implanted electrodes placed in various parts of the brain to pinpoint the origin of the patients’ seizures. Using the team’s electronic prosthetic system based on a multi-input multi-output (MIMO) nonlinear mathematical model, the researchers influenced the firing patterns of multiple neurons in the hippocampus, a part of the brain involved in making new memories in eight of those patients.

First, they recorded the neural patterns or ‘codes’ while the study participants were performing a computerized memory task. The patients were shown a simple image, such as a color block, and after a brief delay where the screen was blanked, were then asked to identify the initial image out of four or five on the screen.

[…]

“We showed that we could tap into a patient’s own memory content, reinforce it and feed it back to the patient,” Hampson said. “Even when a person’s memory is impaired, it is possible to identify the neural firing patterns that indicate correct memory formation and separate them from the patterns that are incorrect. We can then feed in the correct patterns to assist the patient’s brain in accurately forming new memories, not as a replacement for innate memory function, but as a boost to it.

“To date we’ve been trying to determine whether we can improve the memory skill people still have. In the future, we hope to be able to help people hold onto specific memories, such as where they live or what their grandkids look like, when their overall memory begins to fail.”