Brain-Training App Has Research-Backed Claims to Improve User Concentration

The app could potentially be quite useful, but it should be noted that research has been finding what a good brain workout exercise is.

A new ‘brain training’ game designed by researchers at the University of Cambridge improves users’ concentration, according to new research published today. The scientists behind the venture say this could provide a welcome antidote to the daily distractions that we face in a busy world.

In their book, The Distracted Mind: Ancient Brains in a High-Tech World, Adam Gazzaley and Larry D. Rosen point out that with the emergence of new technologies requiring rapid responses to emails and texts and working on multiple projects simultaneously, young people, including students, are having more problems with sustaining attention and frequently become distracted. This difficulty in focussing attention and concentrating is made worse by stress from a global environment that never sleeps and also frequent travel leading to jetlag and poor quality sleep.

“We’ve all experienced coming home from work feeling that we’ve been busy all day, but unsure what we actually did,” says Professor Barbara Sahakian from the Department of Psychiatry. “Most of us spend our time answering emails, looking at text messages, searching social media, trying to multitask. But instead of getting a lot done, we sometimes struggle to complete even a single task and fail to achieve our goal for the day. Then we go home, and even there we find it difficult to ‘switch off’ and read a book or watch TV without picking up our smartphones. For complex tasks we need to get in the ‘flow’ and stay focused.”

In recent years, as smartphones have become ubiquitous, there has been a growth in the number of so-called ‘brain training’ apps that claim to improve cognitive skills such as memory, numerical skills and concentration.

Now, a team from the Behavioural and Clinical Neuroscience Institute at the University of Cambridge, has developed and tested ‘Decoder’, a new game that is aimed at helping users improve their attention and concentration. The game is based on the team’s own research and has been evaluated scientifically.

In a study published today in the journal Frontiers in Behavioural Neuroscience Professor Sahakian and colleague Dr George Savulich have demonstrated that playing Decoder on an iPad for eight hours over one month improves attention and concentration. This form of attention activates a frontal-parietal network in the brain.

In their study, the researchers divided 75 healthy young adults into three groups: one group received Decoder, one control group played Bingo for the same amount of time and a second control group received no game. Participants in the first two groups were invited to attend eight one-hour sessions over the course of a month during which they played either Decoder or Bingo under supervision.

All 75 participants were tested at the start of the trial and then after four weeks using the CANTAB Rapid Visual Information Processing test (RVP). CANTAB RVP has been demonstrated in previously published studies to be a highly sensitive test of attention/concentration.

During the test, participants are asked to detect sequences of digits (e.g. 2-4-6, 3-5-7, 4-6-8). A white box appears in the middle of screen, of which digits from 2 to 9 appear in a pseudo-random order, at a rate of 100 digits per minute. Participants are instructed to press a button every time they detect a sequence. The duration of the test is approximately five minutes.

Results from the study showed a significant difference in attention as measured by the RVP. Those who played Decoder were better than those who played Bingo and those who played no game. The difference in performance was significant and meaningful as it was comparable to those effects seen using stimulants, such as methylphenidate, or nicotine. The former, also known as Ritalin, is a common treatment for Attention Deficit Hyperactivity Disorder (ADHD).

To ensure that Decoder improved focussed attention and concentration without impairing the ability to shift attention, the researchers also tested participants’ ability on the Trail Making Test. Decoder performance also improved on this commonly used neuropsychological test of attentional shifting. During this test, participants have to first attend to numbers and then shift their attention to letters and then shift back to numbers. Additionally, participants enjoyed playing the game, and motivation remained high throughout the 8 hours of gameplay.

Professor Sahakian commented: “Many people tell me that they have trouble focussing their attention. Decoder should help them improve their ability to do this. In addition to healthy people, we hope that the game will be beneficial for patients who have impairments in attention, including those with ADHD or traumatic brain injury. We plan to start a study with traumatic brain injury patients this year.”

Dr Savulich added: “Many brain training apps on the market are not supported by rigorous scientific evidence. Our evidence-based game is developed interactively and the games developer, Tom Piercy, ensures that it is engaging and fun to play. The level of difficulty is matched to the individual player and participants enjoy the challenge of the cognitive training.”

The game has now been licensed through Cambridge Enterprise, the technology transfer arm of the University of Cambridge, to app developer Peak, who specialise in evidence-based ‘brain training’ apps. This will allow Decoder to become accessible to the public. Peak has developed a version for Apple devices and is releasing the game today as part of the Peak Brain Training app. Peak Brain Training is available from the App Store for free and Decoder will be available to both free and pro users as part of their daily workout. The company plans to make a version available for Android devices later this year.

“Peak’s version of Decoder is even more challenging than our original test game, so it will allow players to continue to gain even larger benefits in performance over time,” says Professor Sahakian. “By licensing our game, we hope it can reach a wide audience who are able to benefit by improving their attention.”

Advertisements

Experimental Electric Therapy to Treat Mental Health Problems is Curing PTSD

This is unique research, although it is difficult to determine how valuable it is or its potential for misuse, but its potential of treating mental health disorders — an immense problem in modern society — makes it worth mentioning.

Hundreds of vets have tried out an experimental new treatment that could change how the world addresses mental disorders.

Tony didn’t know what to expect when he walked into the Brain Treatment Center in San Diego, California, last spring. The former Navy SEAL only knew that he needed help. His service in Iraq and Afghanistan was taking a heavy toll on his mental and physical wellbeing. He had trouble concentrating, remembering, and was given to explosive bursts of anger. “If somebody cut me off driving, I was ready to kill ’em at the drop of a hat,” he said. And after he got into a fistfight on the side of a California road, his son looking on from the car, he decided he was willing to try anything — even an experimental therapy that created an electromagnetic field around his brain.

What Tony and several other former U.S. Special Operations Forces personnel received Newport Brain Research Laboratory, located at the Center, was a new treatment for brain disorders, one that might just revolutionize brain-based medicine. Though the FDA clinical trials to judge its efficacy and risks are ongoing, the technique could help humanity deal with a constellation of its most common mental disorders — depression, anxiety, aggressiveness, attention deficit, and others—and do so without drugs. And if its underpinning theory proves correct, it could be among the biggest breakthroughs in the treatment of mental health since the invention of the EEG a century ago.

At the lab, Tony (whose name has been changed to protect his identity) met Dr. Erik Won, president and CEO of the Newport Brain Research Laboratory, the company that’s innovating Magnetic EEG/ECG-guided Resonant Therapy, or MeRT. Won’s team strapped cardiac sensors on Tony and placed an electroencephalography cap on his skull to measure his brain’s baseline electrical activity. Then came the actual therapy. Placing a flashlight-sized device by Tony’s skull, they induced an electromagnetic field that senta small burst of current to his brain. Over the course of 20 minutes, they moved the device around his cranium, delivering jolts that, at their most aggressive, felt like a firm finger tapping.

For Tony, MeRT’s effects were obvious and immediate. He walked out of the first session to a world made new. “Everything looked different,” he told me. “My bike looked super shiny.”

He began to receive MeRT five times a week— each session lasting about an hour, with waiting room time — and quickly noticed a change in his energy. “I was super boosted,” he said. His mood changed as well.

Today, he admits that he still has moments of frustration but says that anger is no longer his “go-to emotion.” He’s developed the ability to cope. He still wants help with his memory, but his life is very different. He’s taken up abstract painting and welding, two hobbies he had no interest in at all before the therapy. He’s put in a new kitchen. Most importantly, his sleep is very different: better.

Tony’s experience was similar to those of five other special-operations veterans who spoke with Defense One. All took part in a double-blind randomized clinical trial that sought to determine how well MeRT treats Persistent Post-Concussion Symptoms and Post-Traumatic Stress Disorder, or PTSD. Five out of the six were former Navy SEALS.

[…]

All said that they saw big improvements after a course of therapy that ran five days a week for about four weeks. Bill reported that his headaches were gone, as did Cathy, who said her depression and mood disorders had lessened considerably. Jim’s memory and concentration improved so dramatically that he had begun pursuing a second master’s degree and won a spot on his college’s football team. Ted said he was feeling “20 years younger” physically and found himself better able to keep pace with the younger SEALS he was training. All of it, they say, was a result of small, precisely delivered, pops of electricity to the brain. Jim said the lab had also successfully treated back and limb pain by targeting the peripheral nervous system with the same technique.

[…]

The lab is about one-third of the way through a double-blind clinical trial that may lead to FDA approval, and so Won was guarded in what he could say about the results of their internal studies. But he said that his team had conducted a separate randomized trial on 86 veterans. After two weeks, 40 percent saw changes in their symptoms; after four weeks, 60 did, he said.

“It’s certainly not a panacea,” said Won. “There are people with residual symptoms, people that struggle…I would say the responses are across the board. Some sleep better. Some would say, very transformative.” (Won doesn’t even categorize the treatment as “curing,” as that has a very specific meaning in neurology and mental health, so much as “helping to treat.”)

[…]

The separate notion that electricity could be used to treat mental disorder entered wide medical practice with the invention of electroconvulsive therapy, or ECT, in Italy in the 1930s. ECT — more commonly called shock therapy — used electricity to induce a seizure in the patient. Its use spread rapidly across psychiatry as it seemed to not only meliorate depression but also to temporarily pacify patients who suffered from psychosis and other disorders. Before long, doctors in mental institutions were prescribing it commonly to subdue troublesome patiets and even as a “cure” for homosexuality. The practice soon became associated with institutional cruelty.

In the 1990s, a handful of researchers, independent of another, realized that electricity at much lower voltages could be used to help with motor function in Parkinson’s patients and as an aid for depression. But there was a big difference between their work and that of earlier practitioners of ECT: they used magnetic fields rather than jolts of electricity. This allowed them to activate brain regions without sending high currents through the skull. Seizures, it seemed, weren’t necessary.

In 2008, researchers began to experiment with what was then called transcranial magnetic stimulation to treat PTSD. Since then, it’s been approved as a treatment for depression. Won and his colleagues don’t use it in the same way that doctors do when they’re looking for something simple and easy to spot, like potential signs of a seizure or head trauma. Won uses EEG/ECG biometrics to find the subject’s baseline frequency, essentially the “normal” state to return her or him to, and also to precisely target the areas of the brain that will respond to stimulation in the right way.

YOU Have a Signature. Your Signature is YOU

No two people experience mental health disorders in the same way. Some PTSD sufferers have memory problems; others, depression; still others, uncontrollable anger. But people that are diagnosed with depression are more likely to suffer from another, separate mental health issue, such as anxiety, attention deficit, or something else.

The theory that underpins MeRT posits that many of these problems share a common origin: a person’s brain has lost the beat of its natural information-processing rhythm, what Won calls the “dominant frequency.”

Your dominant frequency is how many times per second your brain pulses alpha waves. “We’re all somewhere between 8 and 13 hertz. What that means is that we encode information 8 to 13 times per second. You’re born with a signature. There are pros and cons to all of those. If you’re a slower thinker, you might be more creative. If you’re faster, you might be a better athlete,” Won says.

Navy SEALS tend to have higher-than-average dominant frequencis, around 11 or 13 Hz. But physical and emotional trauma can disrupt that, causing the back of the brain and the front of the brain to emit electricity at different rates. The result: lopsided brain activity. MeRT seeks to detect arrhythmia, find out which regions are causing it, and nudge the off-kilter ones back onto the beat.

“Let’s just say in the left dorsal lateral prefrontal cortex, towards the front left side of the brain, if that’s cycling at 2 hertz, where we are 3 or 4 standard deviations below normal, you can pretty comfortably point to that and say that these neurons aren’t firing correctly. If we target that area and say, ‘We are going to nudge that area back to, say, 11 hertz,’ some of those symptoms may improve,” says Won. “In the converse scenario, in the right occipital parietal lobe where, if you’ve taken a hit, you may be cycling too fast. Let’s say it’s 30 hertz. You’re taking in too much information, oversampling your environment. And if you’re only able to process it using executive function 11 times per second, that information overload might manifest as anxiety.”

If the theory behind MeRT is true, it could explain, at least partially, why a person may suffer from many mental-health symptoms: anxiety, depression, attention deficits, etc. The pharmaceutical industry treats them with separate drugs, but they all may have a similar cause, and thus be treatable with one treatment. That, anyway, is what Won’s preliminary results are suggesting.

“You don’t see these type of outcomes with psychopharma or these other types of modalities, so it was pretty exciting,” he said.

There are lots of transcranial direct stimulation therapies out there, with few results to boast of. What distinguishes MeRT from other attempts to treat mental disorders with electrical fields is the use of EEG as a guide. It’s the difference between trying to fix something with the aid of a manual versus just winging it.

If the clinical trials bear out and the FDA approves of MeRT as an effective treatment for concussion and/or PTSD, many more people will try it. The dataset will grow, furthering the science. If that happens, the world will soon know whether or not there is a better therapeutic for mood and sleep disorders than drugs; and a huge portion of the pharmaceutical industry will wake up to earth-changing news.

But there’s more. Won believes that MeRT may have uses for nominally healthy brains, such as improving attention, memory, and reaction time, as Ted discovered. It’s like the eyesight thing, the sudden, stark visual clarity. “These were unexpected findings, but we’re hearing it enough that we want to do more studies.”

Performance enhancement is “not something that we’re ardently chasing,” says Won. ”Our core team is about saving lives. But so many of our veterans are coming back asking.”

Already, there’s evidence to suggest that it could work. “What we’ve noticed in computerized neuro-psych batteries is that reaction times improve. Complex cognitive processing tasks can improve both in terms of speed to decision and the number of times you are right versus wrong. Those are all things we want to quantify and measure with good science,” he says.

Investor John Bogle’s Legacy

Bogle steered many people away from the exploitation that is all too prevalent in the financial system by encouraging usage of index funds, and his legacy deserves praise for that.

Bogle’s great innovation was to minimize the cost of managing individual accounts. The key Vanguard asset is an index fund. It does minimal trading, it just tracks the market. Bogle argued, supported by much evidence, that the vast majority of investors are not going to beat the market. This means trading costs are simply a transfer to the folks running the account. Since most of us have people we would rather give money to than our stockbroker, we are better off just having an index fund.

And it does make a huge difference. Many of Vanguard’s index funds have costs of less than 0.1 percent annually. By contrast, many actively traded accounts will have fees and service charges in the range of 1–2 percent annually. This adds up over time. If you invested $1,000 that got a 6 percent nominal return, it would grow to $5,580 at Vanguard after 30 years. At a brokerage charging 1.0 percent in annua,l fees it would grow to $4,320. At a brokerage charging 2.0 percent annual fees, it would only grow to $3,240. And the gap is all money in the pockets of the financial industry.

While his low-cost index fund was a great innovation in finance, he did not personally get rich from it. He organized Vanguard as a cooperative. The people who invest with the company effectively own it.

Fitness Misconceptions, According to Scientific Research

Suggestions for 2019 — exercise more and more is found to have major health benefits.

Whether you want to tone up, slim down, or boost your mood, you’ve likely taken a stab at tweaking your fitness routine. Unfortunately, there’s a lot of fitness advice out there that won’t help you meet your goals and could actually do more harm than good.

Here’s an overview of some of the most enduring workout myths and misconceptions, as well as the real science that can help you meet your fitness goals in a healthy way.

Myth #1: To stay in shape, you only need to work out once or twice a week.

Truth: Once or twice a week won’t cut it for sustained health benefits.

“A minimum of three days per week for a structured exercise program” is best, Shawn Arent, an exercise scientist at Rutgers University, recently told Business Insider.

“Technically, you should do something every day, and by something I mean physical activity – just move. Because we’re finding more and more that the act of sitting counteracts any of the activity you do.”

[…]

Myth #3: Weight lifting turns fat into muscle.

Truth: You can’t turn fat into muscle. Physiologically speaking, they’re two different tissues. Adipose (fatty) tissue is found under the skin, sandwiched between muscles, and around internal organs like the heart.

Muscle tissue – which can be further broken down into three main types – is found throughout the body.

What weight training really does is help build up the muscle tissue in and around any fat tissue. The best way to reduce fat tissue is to eat a healthy diet that incorporates vegetables, whole grains, lean proteins and – somewhat paradoxically – healthy fats like olive oil and fish.

Myth #4: Puzzles and games are the best ‘brain workout’ around.

Truth: Plain old physical exercise seems to beat out any type of mental puzzle available, according to a wealth of recent research.

Two new studies published this spring suggest that aerobic exercise – any activity that raises your heart rate and gets you moving and sweating for a sustained period of time – has a significant, overwhelmingly beneficial impact on the brain.

“Aerobic exercise is the key for your head, just as it is for your heart,” wrote the authors of a recent Harvard Medical School blog post.

Myth #5: Exercise is the best way to lose weight.

Truth: If you’re looking to lose weight, you shouldn’t assume that you can simply ‘work off’ whatever you eat. Experts say slimming down almost always starts with significant changes to your eating habits.

“In terms of weight loss, diet plays a much bigger role than exercise,” University of Texas exercise scientist Philip Stanforth tells Business Insider.

That said, being active regularly is an important part of any healthy lifestyle.

And when it comes to boosting your mood, improving your memory, and protecting your brain against age-related cognitive decline, research suggests exercise may be as close to a wonder drug as we’ll get.

Myth #6: Sit-ups are the best way to get six-pack abs.

Truth: As opposed to sit-ups, which target only your abdominal muscles, planks recruit several groups of muscles along your sides, front, and back. If you want a strong core – especially the kind that would give you six-pack-like definition – you need to challenge all of these muscles.

“Sit-ups or crunches strengthen just a few muscle groups,” write the authors of the Harvard Healthbeat newsletter.

“Through dynamic patterns of movement, a good core workout helps strengthen the entire set of core muscles you use every day.”

Myth #7: Weight training is for men.

Truth: Weight training is a great way to strengthen muscles, and has nothing to do with gender. That said, women produce less testosterone on average than men do, and studies suggest that hormone plays a role in determining how we build muscle.

Myth #8: It takes at least two weeks to get ‘out of shape’.

Truth: In most people, muscle tissue can start to break down within a week without regular exercise.

“If you stop training, you actually do get noticeable de-conditioning, or the beginnings of de-conditioning, with as little as seven days of complete rest,” Arent said. “It very much is an issue of use it or lose it.”

Myth #9: Running a marathon is the ideal way to get fit.

Truth: Not ready to conquer a marathon? No problem. You can get many of the benefits of long-distance running without ever passing the five-mile mark.

Running fast and hard for just 5 to 10 minutes a day can provide some of the same health outcomes as running for hours can.

In fact, people who run for less than an hour a week – as long as they get in those few minutes each day – see similar benefits in terms of heart health compared to those who run more than three hours per week.

Plus, years of recent research suggest that short bursts of intense exercise can provide some of the same health benefits as long, endurance-style workouts – and they also tend to be more fun.

New Materials for Wound and Skin Healing

Good research into healing — it leverages the body’s own natural resources.

Materials are widely used to help heal wounds: Collagen sponges help treat burns and pressure sores, and scaffold-like implants are used to repair bones. However, the process of tissue repair changes over time, so scientists are developing biomaterials that interact with tissues as healing takes place.

Now, Dr Ben Almquist and his team at Imperial College London have created a new molecule that could change the way traditional materials work with the body. Known as traction force-activated payloads (TrAPs), their method lets materials talk to the body’s natural repair systems to drive healing.

The researchers say incorporating TrAPs into existing medical materials could revolutionise the way injuries are treated. Dr Almquist, from Imperial’s Department of Bioengineering, said: “Our technology could help launch a new generation of materials that actively work with tissues to drive healing.”

The findings are published today in Advanced Materials.

Cellular call to action

After an injury, cells ‘crawl’ through the collagen ‘scaffolds’ found in wounds, like spiders navigating webs. As they move, they pull on the scaffold, which activates hidden healing proteins that begin to repair injured tissue.

The researchers designed TrAPs as a way to recreate this natural healing method. They folded the DNA segments into three-dimensional shapes known as aptamers that cling tightly to proteins. Then, they attached a customisable ‘handle’ that cells can grab onto on one end, before attaching the opposite end to a scaffold such as collagen.

During laboratory testing of their technique, they found that cells pulled on the TrAPs as they crawled through the collagen scaffolds. The pulling made the TrAPs unravel like shoelaces to reveal and activate the healing proteins. These proteins instruct the healing cells to grow and multiply.

The researchers also found that by changing the cellular ‘handle’, they can change which type of cell can grab hold and pull, letting them tailor TrAPs to release specific therapeutic proteins based on which cells are present at a given point in time. In doing so, the TrAPs produce materials that can smartly interact with the correct type of cell at the correct time during wound repair.

This is the first time scientists have activated healing proteins using different types of cells in human-made materials. The technique mimics healing methods found in nature. Dr Almquist said: “Using cell movement to activate healing is found in creatures ranging from sea sponges to humans. Our approach mimics them and actively works with the different varieties of cells that arrive in our damaged tissue over time to promote healing.”

From lab to humans

This approach is adaptable to different cell types, so could be used in a variety of injuries such as fractured bones, scar tissue after heart attacks, and damaged nerves. New techniques are also desperately needed for patients whose wounds won’t heal despite current interventions, like diabetic foot ulcers, which are the leading cause of non-traumatic lower leg amputations.

TrAPs are relatively straightforward to create and are fully human-made, meaning they are easily recreated in different labs and can be scaled up to industrial quantities. Their adaptability also means they could help scientists create new methods for laboratory studies of diseases, stem cells, and tissue development.

Aptamers are currently used as drugs, meaning they are already proven safe and optimised for clinical use. Because TrAPs take advantage of aptamers that are currently optimised for use in humans, they may be able to take a shorter path to the clinic than methods that start from ground zero.

Dr Almquist said: “The TrAP technology provides a flexible method to create materials that actively communicate with the wound and provide key instructions when and where they are needed. This sort of intelligent, dynamic healing is useful during every phase of the healing process, has the potential to increase the body’s chance to recover, and has far-reaching uses on many different types of wounds. This technology has the potential to serve as a conductor of wound repair, orchestrating different cells over time to work together to heal damaged tissues.”

Drug Price Gouging in Generics

General info on prescription drugs and generic drug price gouging.

Martin Shkreli managed to make himself a household name a few years back. His claim to fame stemmed from the decision by Turing Pharmaceuticals, a company he founded and controlled, to acquire the rights to produce Daraprim. He then raised the price of the drug by 5,000 percent.

This was very bad news for the people who were dependent on the drug. Daraprim is an anti-parasitic drug that is often taken by people with AIDS to keep them from getting opportunistic infections. People with AIDS who are being successfully treated with Daraprim are not going to want to experiment with alternatives.

Daraprim was already a 60-year-old drug at the time Turing acquired it and had long been available as a generic. This meant that other manufacturers could in principle come into the market and compete with Turing’s inflated price.

Shkreli made the bet that no other drug company would take advantage of this opportunity, because even for a generic drug, there are still substantial costs for entry. Since the market for Daraprim was small, a new entrant would be unlikely to recover these costs if Turing pushed the price back down somewhere near its original level. While Daraprim was his biggest “success,” Shkreli was trying this strategy with a number of other drugs before the Justice Department put him out of business with unrelated charges of securities fraud.

Shkreli’s days of price gouging in the generic drug world may be over, but he established a model that other ambitious entrepreneurs are likely to follow. Close to 40 percent of generic drugs have only a single manufacturer. This is partly a result of the failure of anti-trust policy to stem a wave of mergers in the industry. It is also a result of the fact that many drugs simply have very limited markets where it is difficult to support multiple producers.

Most generic producers have not tried to follow the Shkreli model and jack up prices of drugs that people need for their health or even their lives, but some have. The soaring price of insulin is one important example, EpiPen, the asthma injector, is another. Both involve well-known treatments that have long been used, but the limited number of suppliers has allowed for huge price increases in recent years.

This is the context for the public drug-manufacturing corporation being proposed in a bill by Senator Elizabeth Warren and Representative Jan Schakowsky. The idea is that the federal government should create manufacturing capacity (which could be privately licensed) that would allow it to quickly enter a market to compete with the next Martin Shkreli.

If a company tries to jack up its prices by an extraordinary amount, it would find itself soon competing with a government manufacturer that is selling the same drug for the cost of production, plus a normal profit. This is a great strategy, since simply the existence of this capacity should be sufficient to discourage the next Shkreli.

There will be little money in jacking up the price of a drug by 5,000 percent if it quickly results in the disappearance of their market. This should encourage the generic industry to keep its prices in line.

It is important to note a key difference between the generic industry and brand industry. The brand pharmaceutical companies, like Pfizer and Merck, could argue that they need high prices to pay for research. These companies hugely exaggerate their research costs and downplay the extent to which high profits just mean more money for shareholders, but they actually do research.

By contrast, the generic industry is not researching new drugs. They are manufacturing drugs that have been developed by others. In this sense they can be thought of like a company that manufacturers paper plates or shovels. They need a normal profit to stay in business, nothing more.

For this reason, the Warren-Schakowsky proposal is very much the right type of remedy for excessive prices in the generic drug industry. At the same time, we have to recognize that generic drugs are the smaller part of the problem with high drug prices.

Although generics account for almost 90 percent of prescriptions, they account for only a bit more than a quarter of spending on prescription drugs. The story of drugs costing tens or hundreds of thousands of dollars a year is almost entirely a story of brand drugs with high prices as a result of patent monopolies or related protections.

This will require a larger fix, likely along the same lines, with the government paying for research and allowing new drugs to be sold as generics. But the Warren-Schakowsky bill is a huge first step in bringing drug costs down and ensuring that people will not find themselves suddenly at the mercy of the next Martin Shkreli.

Joy of Giving Found to Last Longer Than the Joy of Getting

It’s rather striking that this is recent research with how important human happiness is (becoming happy may be the most important thing in life) and with how much focus there’s been on happiness. The research is incomplete, but it is part of a growing series of evidence demonstrating the value of kindness.

The happiness we feel after a particular event or activity diminishes each time we experience that event, a phenomenon known as hedonic adaptation. But giving to others may be the exception to this rule, according to research forthcoming in Psychological Science, a journal of the Association for Psychological Science.

In two studies, psychology researchers Ed O’Brien (University of Chicago Booth School of Business) and Samantha Kassirer (Northwestern University Kellogg School of Management) found that participants’ happiness did not decline, or declined much slower, if they repeatedly bestowed gifts on others versus repeatedly receiving those same gifts themselves.

“If you want to sustain happiness over time, past research tells us that we need to take a break from what we’re currently consuming and experience something new. Our research reveals that the kind of thing may matter more than assumed: Repeated giving, even in identical ways to identical others, may continue to feel relatively fresh and relatively pleasurable the more that we do it,” O’Brien explains.

In one experiment, university student participants received $5 every day for 5 days; they were required to spend the money on the exact same thing each time. The researchers randomly assigned participants to spend the money either on themselves or on someone else, such as by leaving money in a tip jar at the same café or making an online donation to the same charity every day. The participants reflected on their spending experience and overall happiness at the end of each day.

The data, from a total of 96 participants, showed a clear pattern: Participants started off with similar levels of self-reported happiness and those who spent money on themselves reported a steady decline in happiness over the 5-day period. But happiness did not seem to fade for those who gave their money to someone else. The joy from giving for the fifth time in a row was just as strong as it was at the start.

O’Brien and Kassirer then conducted a second experiment online, which allowed them to keep the tasks consistent across participants. In this experiment, 502 participants played 10 rounds of a word puzzle game. They won $0.05 per round, which they either kept or donated to a charity of their choice. After each round, participants disclosed the degree to which winning made them feel happy, elated, and joyful.

Again, the self-reported happiness of those who gave their winnings away declined far more slowly than did the happiness reported by those who kept their winnings.

Further analyses ruled out some potential alternative explanations, such as the possibility that participants who gave to others had to think longer and harder about what to give, which could promote higher happiness.

“We considered many such possibilities, and measured over a dozen of them,” says O’Brien. “None of them could explain our results; there were very few incidental differences between ‘get’ and ‘give’ conditions, and the key difference in happiness remained unchanged when controlling for these other variables in the analyses.”

Adaptation to happiness-inducing experiences can be functional to the extent that it motivates us to pursue and acquire new resources. Why doesn’t this also happen with the happiness we feel when we give?

The researchers note that when people focus on an outcome, such as getting paid, they can easily compare outcomes, which diminishes their sensitivity to each experience. When people focus on an action, such as donating to a charity, they may focus less on comparison and instead experience each act of giving as a unique happiness-inducing event.

We may also be slower to adapt to happiness generated by giving because giving to others helps us maintain our prosocial reputation, reinforcing our sense of social connection and belonging.

These findings raise some interesting questions for future research — for example, would these findings hold if people were giving or receiving larger amounts of money? Or giving to friends versus strangers?

The researchers have also considered looking beyond giving or receiving monetary rewards, since prosocial behavior includes a wide range of experiences.