Doing Math With Better Posture Improves Performance, Study Finds

The research has implications for other areas of performance too.

If you’ve ever felt like a deer in the headlights before taking a math test or speaking before a large group of people, you could benefit from a simple change in posture. As part of a new study by researchers at San Francisco State University, 125 college students were tested to see how well they could perform simple math — subtracting 7 from 843 sequentially for 15 seconds — while either slumped over or sitting up straight with shoulders back and relaxed. Fifty-six percent of the students reported finding it easier to perform the math in the upright position.

“For people who are anxious about math, posture makes a giant difference,” said Professor of Health Education Erik Peper. “The slumped-over position shuts them down and their brains do not work as well. They cannot think as clearly.” Before the study began, students filled out an anonymous questionnaire asking them to rate their anxiety levels while taking exams and performing math; they also described any physical symptoms of stress they experienced during test taking.

According to co-author Associate Professor of Health Education Richard Harvey, slumping over is a defensive posture that can trigger old negative memories in the body and brain. While the students without math anxiety did not report as great a benefit from better posture, they did find that doing math while slumped over was somewhat more difficult.

Peper and Harvey say these findings about body position can help people prepare for many different types of performance under stress, not just math tests. Athletes, musicians and public speakers can all benefit from better posture prior to and during their performance. “You have a choice,” said Peper. “It’s about using an empowered position to optimize your focus.”

That empowerment could be particularly helpful to students facing the challenge called “stereotype threat,” said Lauren Mason, one of the paper’s authors and a recent SF State graduate. A first-generation college student, Mason can identify with such students, who experience fear and insecurity because of a belief by others — which can become internalized — that they won’t do as well at math. Mason said she has benefitted personally from using a more empowered posture before taking difficult tests, including math. She believes that adopting a more confident posture could help other first-generation students as well as women entering science and math, who often battle stereotype threat, too.

“I always felt insecure about my math abilities even though I excelled at other subjects,” said Mason, who helped design the experiment in the study. “You build a relationship with [math] so early — as early as elementary school. You can carry that negative self-talk throughout your life, impacting your perception of yourself.”

Mason said the study results demonstrate a simple way to improve many aspects of life, especially when stress is involved: “The way we carry ourselves and interact in space influences not only how others perceive us but also how we perceive ourselves.”

AI System that Develops Drugs Developed

In a more sensible world, many more resources would be immediately put into this development to (benevolently) accelerate research into medicine. We would have more money for that if we didn’t allow pharmaceutical companies to charge ridiculous prices and then spend woefully inadequate amounts of their revenue on actual research.

An artificial-intelligence approach created at the University of North Carolina at Chapel Hill Eshelman School of Pharmacy can teach itself to design new drug molecules from scratch and has the potential to dramatically accelerate the design of new drug candidates.

The system is called Reinforcement Learning for Structural Evolution, known as ReLeaSE, and is an algorithm and computer program that comprises two neural networks which can be thought of as a teacher and a student. The teacher knows the syntax and linguistic rules behind the vocabulary of chemical structures for about 1.7 million known biologically active molecules. By working with the teacher, the student learns over time and becomes better at proposing molecules that are likely to be useful as new medicines.

Alexander Tropsha, Olexandr Isayev and Mariya Popova, all of the UNC Eshelman School of Pharmacy, are the creators of ReLeaSE. The University has applied for a patent for the technology, and the team published a proof-of-concept study in the journal Science Advances last week.

“If we compare this process to learning a language, then after the student learns the molecular alphabet and the rules of the language, they can create new ‘words,’ or molecules,” said Tropsha. “If the new molecule is realistic and has the desired effect, the teacher approves. If not, the teacher disapproves, forcing the student to avoid bad molecules and create good ones.”

ReLeaSE is a powerful innovation to virtual screening, the computational method widely used by the pharmaceutical industry to identify viable drug candidates. Virtual screening allows scientists to evaluate existing large chemical libraries, but the method only works for known chemicals. ReLeASE has the unique ability to create and evaluate new molecules.

“A scientist using virtual screening is like a customer ordering in a restaurant. What can be ordered is usually limited by the menu,” said Isayev. “We want to give scientists a grocery store and a personal chef who can create any dish they want.”

The team has used ReLeaSE to generate molecules with properties that they specified, such as desired bioactivity and safety profiles. The team used the ReLeaSE method to design molecules with customized physical properties, such as melting point and solubility in water, and to design new compounds with inhibitory activity against an enzyme that is associated with leukemia.

“The ability of the algorithm to design new, and therefore immediately patentable, chemical entities with specific biological activities and optimal safety profiles should be highly attractive to an industry that is constantly searching for new approaches to shorten the time it takes to bring a new drug candidate to clinical trials,” said Tropsha.

At least one of the creators of the AI system seems to have the wrong view of drug patents. Patents on “chemical entities” are definitely not what we need more of.

The U.S. spent $450 billion on prescription drugs in 2017, an amount that could have been about $380 billion less if there were no drug patent monopolies. With that $450 billion, the pharmaceutical industry spent around $70 billion in research and development — less money than they spent on stock buybacks that reward shareholders (and most people aren’t significant shareholders).

It would be sensible to get rid of drug patent monopolies that allow for ridiculous prices, and then simply have the government pay for the $70 billion in research directly. The difference would amount to a savings worth thousands of dollars per family, and it would mean better pharmaceutical research too.

Even Minor Dehydration Can Make Thinking More Difficult

If climate change leads to increased temperatures throughout the world, people will sweat off water faster, meaning that they will become dehydrated more quickly. This has clear implications for possibly reducing the average level of decision making among humans.

If you’re finding it hard to get your thoughts straight, dehydration could be to blame. An analysis of previous research has found a link between dehydration and poor performance in tasks that need serious focus or advanced mental processing.

While we know that staying hydrated is good for us for all kinds of reasons, this new meta-study was designed to take a closer look at exactly which brain processes might be affected and at what level of dehydration.

It turns out that at just a 2 percent level of body mass loss due to dehydration – so losing about a litre of water through sweat – the mental imbalance starts. That underlines how crucial it is for us to keep up our water intake, and how damaging it might be to the mental agility we all rely on if we don’t.

“We find that when people are mildly dehydrated they really don’t do as well on tasks that require complex processing or on tasks that require a lot of their attention,” lead researcher Mindy Millard-Stafford, from the Georgia Institute of Technology, told Allison Aubrey at NPR.

Millard-Stafford and her colleague Matthew Wittbrodt looked at 33 previous studies linking dehydration with mental performance. In total, the studies covered a total of 413 individuals experiencing between 1 percent and 6 percent of body mass loss through dehydration.

That 2 percent point seems to be the tipping point when it comes to staying mentally sharp. According to the experts, it would maybe take an hour’s hike to get to that level.

What’s more, it’s a level of dehydration that we might not actually notice through triggers like increased thirst: so mental performance could decline even when we don’t feel like we need to take on any water.

The analysis backs up previous research suggesting that dehydration impairs some mental processes more than others, with attention, executive function, and motor coordination particularly hard hit. Lower-level tasks like reaction time aren’t as badly affected, the meta-study shows.

While it’s different for every individual, experts recommend that women get up to 2.7 litres or 95 fluid ounces (11.5 cups) of water every day, and men up to 3.7 litres or 130 fluid ounces (15.5 cups).

The body as a whole is 60 percent water, which it leverages for jobs like transporting nutrients around the body and lubricating our eyeballs.

When there isn’t enough water available – it’s regularly lost through sweating and urination – these vital functions start to break down. We become thirsty, start to feel nauseous, and become more likely to feel exhausted.

Study Proves that Dogs Have Empathy

Interesting research into interactions between dogs and humans.

Many dogs show empathy if their owner is in distress and will also try to help rescue them. This is according to Emily M. Sanford, formerly of Macalester College and now at Johns Hopkins University in the US. She is the lead author of a study in Springer’s journal Learning & Behavior that tested whether there is truth in the notion that dogs have a prosocial and empathetic nature. Interesting to note, the study found that dogs specially trained for visitations as therapy dogs are just as likely to help as other dogs.

In one of their experiments, Sanford and her colleagues instructed the owners of 34 dogs to either give distressed cries or to hum while sitting behind a see-through closed door. Sixteen of these dogs were registered therapy dogs. The researchers watched what the dogs did, and also measured their heart rate variability to see how they physically reacted to the situation. In another part of the experiment, the researchers examined how these same dogs gazed at their owners to measure the strength of their relationship.

Dogs that heard distress calls were no more likely to open a door than dogs that heard someone humming. However, they opened the door much faster if their owner was crying. Based on their physiological and behavioral responses, dogs who opened the door were, in fact, less stressed than they were during baseline measurements, indicating that those who could suppress their own distress were the ones who could jump into action.

The study therefore provides evidence that dogs not only feel empathy towards people, but in some cases also act on this empathy. This happens especially when they are able to suppress their own feelings of distress and can focus on those of the human involved. According to Sanford, this is similar to what is seen when children need to help others. They are only able to do so when they can suppress their own feelings of personal distress.

“It appears that adopting another’s emotional state through emotional contagion alone is not sufficient to motivate an empathetic helping response; otherwise, the most stressed dogs could have also opened the door,” explains co-author Julia Meyers-Manor of Ripon College in the US. “The extent of this empathetic response and under what conditions it can be elicited deserve further investigation, especially as it can improve our understanding of the shared evolutionary history of humans and dogs.”

Aging Aesthetics Reversed in Mice

Mice are similar enough to humans to make this interesting.

Wrinkled skin and hair loss are hallmarks of aging. What if they could be reversed?

Keshav Singh, Ph.D., and colleagues have done just that, in a mouse model developed at the University of Alabama at Birmingham. When a mutation leading to mitochondrial dysfunction is induced, the mouse develops wrinkled skin and extensive, visible hair loss in a matter of weeks. When the mitochondrial function is restored by turning off the gene responsible for mitochondrial dysfunction, the mouse returns to smooth skin and thick fur, indistinguishable from a healthy mouse of the same age.

“To our knowledge, this observation is unprecedented,” said Singh, a professor of genetics in the UAB School of Medicine.

Importantly, the mutation that does this is in a nuclear gene affecting mitochondrial function, the tiny organelles known as the powerhouses of the cells. Numerous mitochondria in cells produce 90 percent of the chemical energy cells need to survive.

In humans, a decline in mitochondrial function is seen during aging, and mitochondrial dysfunction can drive age-related diseases. A depletion of the DNA in mitochondria is also implicated in human mitochondrial diseases, cardiovascular disease, diabetes, age-associated neurological disorders and cancer.

“This mouse model,” Singh said, “should provide an unprecedented opportunity for the development of preventive and therapeutic drug development strategies to augment the mitochondrial functions for the treatment of aging-associated skin and hair pathology and other human diseases in which mitochondrial dysfunction plays a significant role.”

The mutation in the mouse model is induced when the antibiotic doxycycline is added to the food or drinking water. This causes depletion of mitochondrial DNA because the enzyme to replicate the DNA becomes inactive.

[…]

Reversal of the mutation restored mitochondrial function, as well as the skin and hair pathology. This showed that mitochondria are reversible regulators of skin aging and loss of hair, an observation that Singh calls “surprising.”

Research: Everyone has Unique Brain Anatomy

Apparently this wasn’t thought much 30 years ago. It is also a bit surprising that some of the differences are driven primarily by repeated experiences.

Like with fingerprints, no two people have the same brain anatomy, a study by researchers of the University of Zurich has shown. This uniqueness is the result of a combination of genetic factors and individual life experiences.

The fingerprint is unique in every individual: As no two fingerprints are the same, they have become the go-to method of identity verification for police, immigration authorities and smartphone producers alike. But what about the central switchboard inside our heads? Is it possible to find out who a brain belongs to from certain anatomical features? This is the question posed by the group working with Lutz Jäncke, UZH professor of neuropsychology. In earlier studies, Jäncke had already been able to demonstrate that individual experiences and life circumstances influence the anatomy of the brain.

Experiences make their mark on the brain

Professional musicians, golfers or chess players, for example, have particular characteristics in the regions of the brain which they use the most for their skilled activity. However, events of shorter duration can also leave behind traces in the brain: If, for example, the right arm is kept still for two weeks, the thickness of the brain’s cortex in the areas responsible for controlling the immobilized arm is reduced. “We suspected that those experiences having an effect on the brain interact with the genetic make-up so that over the course of years every person develops a completely individual brain anatomy,” explains Jäncke.

Magnetic resonance imaging provides basis for calculations

To investigate their hypothesis, Jäncke and his research team examined the brains of nearly 200 healthy older people using magnetic resonance imaging three times over a period of two years. Over 450 brain anatomical features were assessed, including very general ones such as total volume of the brain, thickness of the cortex, and volumes of grey and white matter. For each of the 191 people, the researchers were able to identify an individual combination of specific brain anatomical characteristics, whereby the identification accuracy, even for the very general brain anatomical characteristics, was over 90 percent.

Combination of circumstances and genetics

“With our study we were able to confirm that the structure of people’s brains is very individual,” says Lutz Jäncke on the findings. “The combination of genetic and non-genetic influences clearly affects not only the functioning of the brain, but also its anatomy.” The replacement of fingerprint sensors with MRI scans in the future is unlikely, however. MRIs are too expensive and time-consuming in comparison to the proven and simple method of taking fingerprints.

Progress in neuroscience

An important aspect of the study’s findings for Jäncke is that they reflect the great developments made in the field in recent years: “Just 30 years ago we thought that the human brain had few or no individual characteristics. Personal identification through brain anatomical characteristics was unimaginable.”

Boosting Serotonin Can Speed Learning

I’m sure this research has more implications than currently realized.

Serotonin is thought to mediate communications between neural cells and play an essential role in functional, and dysfunctional, cognition. For a long time, serotonin has been recognized as a major target of antidepressants (selective-serotonin-reuptake-inhibitor (SSRIs) that are used to treat various psychiatric conditions, such as depression, obsessive-compulsive-disorder and forms of anxiety. However, serotonin in humans, and other animals, is associated with a bewildering variety of aspects of cognition and decision-making, including punishment, reward and patience.

[…]

In the experiments, mice were trained to choose one of the two targets to receive water rewards. Mice continually had to learn which of the targets was more rewarding, as the reward rates changed without warning. Crucially, sometimes serotonin release in the brain was temporarily boosted in mice with genetically modified serotonin neurons by a technique called optogenetics, allowing the effects of serotonin on learning to be assessed.

Iigaya built a computational account of mice behaviour based on reinforcement learning principles, which are widely used in machine-learning and AI. Iigaya found that the learning rate, i.e. how fast the modelled mice learn, was modulated by serotonin stimulation. He compared trials with and without stimulation of serotonin neurons, and observed that the learning rate was significantly faster when stimulation was delivered, meaning that boosting serotonin sped up learning in mice.

[…]

The authors conclude: “Our results suggest that serotonin boosts [brain] plasticity by influencing the rate of learning. This resonates, for instance, with the fact that treatment with an SSRI can be more effective when combined with so-called cognitive behavioral therapy, which encourages the breaking of habits in patients.”

Substantial clinical research shows that SSRI treatment is often most effective if combined with cognitive-behavioural-therapy (CBT). The goal of CBT is to change maladaptive thinking and behaviour actively, through sessions that are designed for patients to (re)learn their way to think and behave. However, scientists have had limited understanding of how and why SSRI and CBT work together for treatments. The new findings point to a possible functional link between the two, with serotonin boosting the learning inherent to CBT, providing clues as to one of the roles that this neuromodulator plays in the treatment of psychiatric disorders.