People Act Differently in Virtual Reality Than in Real Life

In our increasingly digital world, real life remains incredibly important for genuine human interactions.

Immersive virtual reality (VR) can be remarkably lifelike, but new UBC research has found a yawning gap between how people respond psychologically in VR and how they respond in real life.

“People expect VR experiences to mimic actual reality and thus induce similar forms of thought and behaviour,” said Alan Kingstone, a professor in UBC’s department of psychology and the study’s senior author. “This study shows that there’s a big separation between being in the real world, and being in a VR world.”

The study used virtual reality to examine factors that influence yawning, focusing specifically on contagious yawning. Contagious yawning is a well-documented phenomenon in which people — and some non-human animals — yawn reflexively when they detect a yawn nearby.

Research has shown that “social presence” deters contagious yawning. When people believe they are being watched, they yawn less, or at least resist the urge. This may be due to the stigma of yawning in social settings, or its perception in many cultures as a sign of boredom or rudeness.

The team from UBC, along with Andrew Gallup from State University of New York Polytechnic Institute, tried to bring about contagious yawning in a VR environment. They had test subjects wear an immersive headset and exposed them to videos of people yawning. In those conditions, the rate of contagious yawning was 38 per cent, which is in line with the typical real-life rate of 30-60 per cent.

However, when the researchers introduced social presence in the virtual environment, they were surprised to find it had little effect on subjects’ yawning. Subjects yawned at the same rate, even while being watched by a virtual human avatar or a virtual webcam. It was an interesting paradox: stimuli that trigger contagious yawns in real life did the same in virtual reality, but stimuli that suppress yawns in real life did not.

The presence of an actual person in the testing room had a more significant effect on yawning than anything in the VR environment. Even though subjects couldn’t see or hear their company, simply knowing a researcher was present was enough to diminish their yawning. Social cues in actual reality appeared to dominate and supersede those in virtual reality.

Virtual reality has caught on as a research tool in psychology and other fields, but these findings show that researchers may need to account for its limitations.

“Using VR to examine how people think and behave in real life may very well lead to conclusions that are fundamentally wrong. This has profound implications for people who hope to use VR to make accurate projections regarding future behaviours,” said Kingstone. “For example, predicting how pedestrians will behave when walking amongst driverless cars, or the decisions that pilots will make in an emergency situation. Experiences in VR may be a poor proxy for real life.”

Advertisements

Experimental Electric Therapy to Treat Mental Health Problems is Curing PTSD

This is unique research, although it is difficult to determine how valuable it is or its potential for misuse, but its potential of treating mental health disorders — an immense problem in modern society — makes it worth mentioning.

Hundreds of vets have tried out an experimental new treatment that could change how the world addresses mental disorders.

Tony didn’t know what to expect when he walked into the Brain Treatment Center in San Diego, California, last spring. The former Navy SEAL only knew that he needed help. His service in Iraq and Afghanistan was taking a heavy toll on his mental and physical wellbeing. He had trouble concentrating, remembering, and was given to explosive bursts of anger. “If somebody cut me off driving, I was ready to kill ’em at the drop of a hat,” he said. And after he got into a fistfight on the side of a California road, his son looking on from the car, he decided he was willing to try anything — even an experimental therapy that created an electromagnetic field around his brain.

What Tony and several other former U.S. Special Operations Forces personnel received Newport Brain Research Laboratory, located at the Center, was a new treatment for brain disorders, one that might just revolutionize brain-based medicine. Though the FDA clinical trials to judge its efficacy and risks are ongoing, the technique could help humanity deal with a constellation of its most common mental disorders — depression, anxiety, aggressiveness, attention deficit, and others—and do so without drugs. And if its underpinning theory proves correct, it could be among the biggest breakthroughs in the treatment of mental health since the invention of the EEG a century ago.

At the lab, Tony (whose name has been changed to protect his identity) met Dr. Erik Won, president and CEO of the Newport Brain Research Laboratory, the company that’s innovating Magnetic EEG/ECG-guided Resonant Therapy, or MeRT. Won’s team strapped cardiac sensors on Tony and placed an electroencephalography cap on his skull to measure his brain’s baseline electrical activity. Then came the actual therapy. Placing a flashlight-sized device by Tony’s skull, they induced an electromagnetic field that senta small burst of current to his brain. Over the course of 20 minutes, they moved the device around his cranium, delivering jolts that, at their most aggressive, felt like a firm finger tapping.

For Tony, MeRT’s effects were obvious and immediate. He walked out of the first session to a world made new. “Everything looked different,” he told me. “My bike looked super shiny.”

He began to receive MeRT five times a week— each session lasting about an hour, with waiting room time — and quickly noticed a change in his energy. “I was super boosted,” he said. His mood changed as well.

Today, he admits that he still has moments of frustration but says that anger is no longer his “go-to emotion.” He’s developed the ability to cope. He still wants help with his memory, but his life is very different. He’s taken up abstract painting and welding, two hobbies he had no interest in at all before the therapy. He’s put in a new kitchen. Most importantly, his sleep is very different: better.

Tony’s experience was similar to those of five other special-operations veterans who spoke with Defense One. All took part in a double-blind randomized clinical trial that sought to determine how well MeRT treats Persistent Post-Concussion Symptoms and Post-Traumatic Stress Disorder, or PTSD. Five out of the six were former Navy SEALS.

[…]

All said that they saw big improvements after a course of therapy that ran five days a week for about four weeks. Bill reported that his headaches were gone, as did Cathy, who said her depression and mood disorders had lessened considerably. Jim’s memory and concentration improved so dramatically that he had begun pursuing a second master’s degree and won a spot on his college’s football team. Ted said he was feeling “20 years younger” physically and found himself better able to keep pace with the younger SEALS he was training. All of it, they say, was a result of small, precisely delivered, pops of electricity to the brain. Jim said the lab had also successfully treated back and limb pain by targeting the peripheral nervous system with the same technique.

[…]

The lab is about one-third of the way through a double-blind clinical trial that may lead to FDA approval, and so Won was guarded in what he could say about the results of their internal studies. But he said that his team had conducted a separate randomized trial on 86 veterans. After two weeks, 40 percent saw changes in their symptoms; after four weeks, 60 did, he said.

“It’s certainly not a panacea,” said Won. “There are people with residual symptoms, people that struggle…I would say the responses are across the board. Some sleep better. Some would say, very transformative.” (Won doesn’t even categorize the treatment as “curing,” as that has a very specific meaning in neurology and mental health, so much as “helping to treat.”)

[…]

The separate notion that electricity could be used to treat mental disorder entered wide medical practice with the invention of electroconvulsive therapy, or ECT, in Italy in the 1930s. ECT — more commonly called shock therapy — used electricity to induce a seizure in the patient. Its use spread rapidly across psychiatry as it seemed to not only meliorate depression but also to temporarily pacify patients who suffered from psychosis and other disorders. Before long, doctors in mental institutions were prescribing it commonly to subdue troublesome patiets and even as a “cure” for homosexuality. The practice soon became associated with institutional cruelty.

In the 1990s, a handful of researchers, independent of another, realized that electricity at much lower voltages could be used to help with motor function in Parkinson’s patients and as an aid for depression. But there was a big difference between their work and that of earlier practitioners of ECT: they used magnetic fields rather than jolts of electricity. This allowed them to activate brain regions without sending high currents through the skull. Seizures, it seemed, weren’t necessary.

In 2008, researchers began to experiment with what was then called transcranial magnetic stimulation to treat PTSD. Since then, it’s been approved as a treatment for depression. Won and his colleagues don’t use it in the same way that doctors do when they’re looking for something simple and easy to spot, like potential signs of a seizure or head trauma. Won uses EEG/ECG biometrics to find the subject’s baseline frequency, essentially the “normal” state to return her or him to, and also to precisely target the areas of the brain that will respond to stimulation in the right way.

YOU Have a Signature. Your Signature is YOU

No two people experience mental health disorders in the same way. Some PTSD sufferers have memory problems; others, depression; still others, uncontrollable anger. But people that are diagnosed with depression are more likely to suffer from another, separate mental health issue, such as anxiety, attention deficit, or something else.

The theory that underpins MeRT posits that many of these problems share a common origin: a person’s brain has lost the beat of its natural information-processing rhythm, what Won calls the “dominant frequency.”

Your dominant frequency is how many times per second your brain pulses alpha waves. “We’re all somewhere between 8 and 13 hertz. What that means is that we encode information 8 to 13 times per second. You’re born with a signature. There are pros and cons to all of those. If you’re a slower thinker, you might be more creative. If you’re faster, you might be a better athlete,” Won says.

Navy SEALS tend to have higher-than-average dominant frequencis, around 11 or 13 Hz. But physical and emotional trauma can disrupt that, causing the back of the brain and the front of the brain to emit electricity at different rates. The result: lopsided brain activity. MeRT seeks to detect arrhythmia, find out which regions are causing it, and nudge the off-kilter ones back onto the beat.

“Let’s just say in the left dorsal lateral prefrontal cortex, towards the front left side of the brain, if that’s cycling at 2 hertz, where we are 3 or 4 standard deviations below normal, you can pretty comfortably point to that and say that these neurons aren’t firing correctly. If we target that area and say, ‘We are going to nudge that area back to, say, 11 hertz,’ some of those symptoms may improve,” says Won. “In the converse scenario, in the right occipital parietal lobe where, if you’ve taken a hit, you may be cycling too fast. Let’s say it’s 30 hertz. You’re taking in too much information, oversampling your environment. And if you’re only able to process it using executive function 11 times per second, that information overload might manifest as anxiety.”

If the theory behind MeRT is true, it could explain, at least partially, why a person may suffer from many mental-health symptoms: anxiety, depression, attention deficits, etc. The pharmaceutical industry treats them with separate drugs, but they all may have a similar cause, and thus be treatable with one treatment. That, anyway, is what Won’s preliminary results are suggesting.

“You don’t see these type of outcomes with psychopharma or these other types of modalities, so it was pretty exciting,” he said.

There are lots of transcranial direct stimulation therapies out there, with few results to boast of. What distinguishes MeRT from other attempts to treat mental disorders with electrical fields is the use of EEG as a guide. It’s the difference between trying to fix something with the aid of a manual versus just winging it.

If the clinical trials bear out and the FDA approves of MeRT as an effective treatment for concussion and/or PTSD, many more people will try it. The dataset will grow, furthering the science. If that happens, the world will soon know whether or not there is a better therapeutic for mood and sleep disorders than drugs; and a huge portion of the pharmaceutical industry will wake up to earth-changing news.

But there’s more. Won believes that MeRT may have uses for nominally healthy brains, such as improving attention, memory, and reaction time, as Ted discovered. It’s like the eyesight thing, the sudden, stark visual clarity. “These were unexpected findings, but we’re hearing it enough that we want to do more studies.”

Performance enhancement is “not something that we’re ardently chasing,” says Won. ”Our core team is about saving lives. But so many of our veterans are coming back asking.”

Already, there’s evidence to suggest that it could work. “What we’ve noticed in computerized neuro-psych batteries is that reaction times improve. Complex cognitive processing tasks can improve both in terms of speed to decision and the number of times you are right versus wrong. Those are all things we want to quantify and measure with good science,” he says.

Fitness Misconceptions, According to Scientific Research

Suggestions for 2019 — exercise more and more is found to have major health benefits.

Whether you want to tone up, slim down, or boost your mood, you’ve likely taken a stab at tweaking your fitness routine. Unfortunately, there’s a lot of fitness advice out there that won’t help you meet your goals and could actually do more harm than good.

Here’s an overview of some of the most enduring workout myths and misconceptions, as well as the real science that can help you meet your fitness goals in a healthy way.

Myth #1: To stay in shape, you only need to work out once or twice a week.

Truth: Once or twice a week won’t cut it for sustained health benefits.

“A minimum of three days per week for a structured exercise program” is best, Shawn Arent, an exercise scientist at Rutgers University, recently told Business Insider.

“Technically, you should do something every day, and by something I mean physical activity – just move. Because we’re finding more and more that the act of sitting counteracts any of the activity you do.”

[…]

Myth #3: Weight lifting turns fat into muscle.

Truth: You can’t turn fat into muscle. Physiologically speaking, they’re two different tissues. Adipose (fatty) tissue is found under the skin, sandwiched between muscles, and around internal organs like the heart.

Muscle tissue – which can be further broken down into three main types – is found throughout the body.

What weight training really does is help build up the muscle tissue in and around any fat tissue. The best way to reduce fat tissue is to eat a healthy diet that incorporates vegetables, whole grains, lean proteins and – somewhat paradoxically – healthy fats like olive oil and fish.

Myth #4: Puzzles and games are the best ‘brain workout’ around.

Truth: Plain old physical exercise seems to beat out any type of mental puzzle available, according to a wealth of recent research.

Two new studies published this spring suggest that aerobic exercise – any activity that raises your heart rate and gets you moving and sweating for a sustained period of time – has a significant, overwhelmingly beneficial impact on the brain.

“Aerobic exercise is the key for your head, just as it is for your heart,” wrote the authors of a recent Harvard Medical School blog post.

Myth #5: Exercise is the best way to lose weight.

Truth: If you’re looking to lose weight, you shouldn’t assume that you can simply ‘work off’ whatever you eat. Experts say slimming down almost always starts with significant changes to your eating habits.

“In terms of weight loss, diet plays a much bigger role than exercise,” University of Texas exercise scientist Philip Stanforth tells Business Insider.

That said, being active regularly is an important part of any healthy lifestyle.

And when it comes to boosting your mood, improving your memory, and protecting your brain against age-related cognitive decline, research suggests exercise may be as close to a wonder drug as we’ll get.

Myth #6: Sit-ups are the best way to get six-pack abs.

Truth: As opposed to sit-ups, which target only your abdominal muscles, planks recruit several groups of muscles along your sides, front, and back. If you want a strong core – especially the kind that would give you six-pack-like definition – you need to challenge all of these muscles.

“Sit-ups or crunches strengthen just a few muscle groups,” write the authors of the Harvard Healthbeat newsletter.

“Through dynamic patterns of movement, a good core workout helps strengthen the entire set of core muscles you use every day.”

Myth #7: Weight training is for men.

Truth: Weight training is a great way to strengthen muscles, and has nothing to do with gender. That said, women produce less testosterone on average than men do, and studies suggest that hormone plays a role in determining how we build muscle.

Myth #8: It takes at least two weeks to get ‘out of shape’.

Truth: In most people, muscle tissue can start to break down within a week without regular exercise.

“If you stop training, you actually do get noticeable de-conditioning, or the beginnings of de-conditioning, with as little as seven days of complete rest,” Arent said. “It very much is an issue of use it or lose it.”

Myth #9: Running a marathon is the ideal way to get fit.

Truth: Not ready to conquer a marathon? No problem. You can get many of the benefits of long-distance running without ever passing the five-mile mark.

Running fast and hard for just 5 to 10 minutes a day can provide some of the same health outcomes as running for hours can.

In fact, people who run for less than an hour a week – as long as they get in those few minutes each day – see similar benefits in terms of heart health compared to those who run more than three hours per week.

Plus, years of recent research suggest that short bursts of intense exercise can provide some of the same health benefits as long, endurance-style workouts – and they also tend to be more fun.

New Materials for Wound and Skin Healing

Good research into healing — it leverages the body’s own natural resources.

Materials are widely used to help heal wounds: Collagen sponges help treat burns and pressure sores, and scaffold-like implants are used to repair bones. However, the process of tissue repair changes over time, so scientists are developing biomaterials that interact with tissues as healing takes place.

Now, Dr Ben Almquist and his team at Imperial College London have created a new molecule that could change the way traditional materials work with the body. Known as traction force-activated payloads (TrAPs), their method lets materials talk to the body’s natural repair systems to drive healing.

The researchers say incorporating TrAPs into existing medical materials could revolutionise the way injuries are treated. Dr Almquist, from Imperial’s Department of Bioengineering, said: “Our technology could help launch a new generation of materials that actively work with tissues to drive healing.”

The findings are published today in Advanced Materials.

Cellular call to action

After an injury, cells ‘crawl’ through the collagen ‘scaffolds’ found in wounds, like spiders navigating webs. As they move, they pull on the scaffold, which activates hidden healing proteins that begin to repair injured tissue.

The researchers designed TrAPs as a way to recreate this natural healing method. They folded the DNA segments into three-dimensional shapes known as aptamers that cling tightly to proteins. Then, they attached a customisable ‘handle’ that cells can grab onto on one end, before attaching the opposite end to a scaffold such as collagen.

During laboratory testing of their technique, they found that cells pulled on the TrAPs as they crawled through the collagen scaffolds. The pulling made the TrAPs unravel like shoelaces to reveal and activate the healing proteins. These proteins instruct the healing cells to grow and multiply.

The researchers also found that by changing the cellular ‘handle’, they can change which type of cell can grab hold and pull, letting them tailor TrAPs to release specific therapeutic proteins based on which cells are present at a given point in time. In doing so, the TrAPs produce materials that can smartly interact with the correct type of cell at the correct time during wound repair.

This is the first time scientists have activated healing proteins using different types of cells in human-made materials. The technique mimics healing methods found in nature. Dr Almquist said: “Using cell movement to activate healing is found in creatures ranging from sea sponges to humans. Our approach mimics them and actively works with the different varieties of cells that arrive in our damaged tissue over time to promote healing.”

From lab to humans

This approach is adaptable to different cell types, so could be used in a variety of injuries such as fractured bones, scar tissue after heart attacks, and damaged nerves. New techniques are also desperately needed for patients whose wounds won’t heal despite current interventions, like diabetic foot ulcers, which are the leading cause of non-traumatic lower leg amputations.

TrAPs are relatively straightforward to create and are fully human-made, meaning they are easily recreated in different labs and can be scaled up to industrial quantities. Their adaptability also means they could help scientists create new methods for laboratory studies of diseases, stem cells, and tissue development.

Aptamers are currently used as drugs, meaning they are already proven safe and optimised for clinical use. Because TrAPs take advantage of aptamers that are currently optimised for use in humans, they may be able to take a shorter path to the clinic than methods that start from ground zero.

Dr Almquist said: “The TrAP technology provides a flexible method to create materials that actively communicate with the wound and provide key instructions when and where they are needed. This sort of intelligent, dynamic healing is useful during every phase of the healing process, has the potential to increase the body’s chance to recover, and has far-reaching uses on many different types of wounds. This technology has the potential to serve as a conductor of wound repair, orchestrating different cells over time to work together to heal damaged tissues.”

Joy of Giving Found to Last Longer Than the Joy of Getting

It’s rather striking that this is recent research with how important human happiness is (becoming happy may be the most important thing in life) and with how much focus there’s been on happiness. The research is incomplete, but it is part of a growing series of evidence demonstrating the value of kindness.

The happiness we feel after a particular event or activity diminishes each time we experience that event, a phenomenon known as hedonic adaptation. But giving to others may be the exception to this rule, according to research forthcoming in Psychological Science, a journal of the Association for Psychological Science.

In two studies, psychology researchers Ed O’Brien (University of Chicago Booth School of Business) and Samantha Kassirer (Northwestern University Kellogg School of Management) found that participants’ happiness did not decline, or declined much slower, if they repeatedly bestowed gifts on others versus repeatedly receiving those same gifts themselves.

“If you want to sustain happiness over time, past research tells us that we need to take a break from what we’re currently consuming and experience something new. Our research reveals that the kind of thing may matter more than assumed: Repeated giving, even in identical ways to identical others, may continue to feel relatively fresh and relatively pleasurable the more that we do it,” O’Brien explains.

In one experiment, university student participants received $5 every day for 5 days; they were required to spend the money on the exact same thing each time. The researchers randomly assigned participants to spend the money either on themselves or on someone else, such as by leaving money in a tip jar at the same café or making an online donation to the same charity every day. The participants reflected on their spending experience and overall happiness at the end of each day.

The data, from a total of 96 participants, showed a clear pattern: Participants started off with similar levels of self-reported happiness and those who spent money on themselves reported a steady decline in happiness over the 5-day period. But happiness did not seem to fade for those who gave their money to someone else. The joy from giving for the fifth time in a row was just as strong as it was at the start.

O’Brien and Kassirer then conducted a second experiment online, which allowed them to keep the tasks consistent across participants. In this experiment, 502 participants played 10 rounds of a word puzzle game. They won $0.05 per round, which they either kept or donated to a charity of their choice. After each round, participants disclosed the degree to which winning made them feel happy, elated, and joyful.

Again, the self-reported happiness of those who gave their winnings away declined far more slowly than did the happiness reported by those who kept their winnings.

Further analyses ruled out some potential alternative explanations, such as the possibility that participants who gave to others had to think longer and harder about what to give, which could promote higher happiness.

“We considered many such possibilities, and measured over a dozen of them,” says O’Brien. “None of them could explain our results; there were very few incidental differences between ‘get’ and ‘give’ conditions, and the key difference in happiness remained unchanged when controlling for these other variables in the analyses.”

Adaptation to happiness-inducing experiences can be functional to the extent that it motivates us to pursue and acquire new resources. Why doesn’t this also happen with the happiness we feel when we give?

The researchers note that when people focus on an outcome, such as getting paid, they can easily compare outcomes, which diminishes their sensitivity to each experience. When people focus on an action, such as donating to a charity, they may focus less on comparison and instead experience each act of giving as a unique happiness-inducing event.

We may also be slower to adapt to happiness generated by giving because giving to others helps us maintain our prosocial reputation, reinforcing our sense of social connection and belonging.

These findings raise some interesting questions for future research — for example, would these findings hold if people were giving or receiving larger amounts of money? Or giving to friends versus strangers?

The researchers have also considered looking beyond giving or receiving monetary rewards, since prosocial behavior includes a wide range of experiences.

New Bandage Speeds Skin Healing By Using Electric Stimulation

It’s cool that the bandage worked well on rats (which are used in scientific experiments due to having some important similarities to humans) by using electric stimulation created by an electric field.

Skin has a remarkable ability to heal itself. But in some cases, wounds heal very slowly or not at all, putting a person at risk for chronic pain, infection and scarring. Now, researchers have developed a self-powered bandage that generates an electric field over an injury, dramatically reducing the healing time for skin wounds in rats. They report their results in ACS Nano.

Chronic skin wounds include diabetic foot ulcers, venous ulcers and non-healing surgical wounds. Doctors have tried various approaches to help chronic wounds heal, including bandaging, dressing, exposure to oxygen and growth-factor therapy, but they often show limited effectiveness. As early as the 1960s, researchers observed that electrical stimulation could help skin wounds heal. However, the equipment for generating the electric field is often large and may require patient hospitalization. Weibo Cai, Xudong Wang and colleagues wanted to develop a flexible, self-powered bandage that could convert skin movements into a therapeutic electric field.

To power their electric bandage, or e-bandage, the researchers made a wearable nanogenerator by overlapping sheets of polytetrafluoroethylene (PTFE), copper foil and polyethylene terephthalate (PET). The nanogenerator converted skin movements, which occur during normal activity or even breathing, into small electrical pulses. This current flowed to two working electrodes that were placed on either side of the skin wound to produce a weak electric field. The team tested the device by placing it over wounds on rats’ backs. Wounds covered by e-bandages closed within 3 days, compared with 12 days for a control bandage with no electric field. The researchers attribute the faster wound healing to enhanced fibroblast migration, proliferation and differentiation induced by the electric field.

Infections During Childhood Increase Risks of Mental Disorders Developing

The connection between mind and body is further emphasized.

A new study from iPSYCH shows that the infections children contract during their childhood are linked to an increase in the risk of mental disorders during childhood and adolescence. This knowledge expands our understanding of the role of the immune system in the development of mental disorders.

High temperatures, sore throats and infections during childhood can increase the risk of also suffering from a mental disorder as a child or adolescent. This is shown by the first study of its kind to follow all children born in Denmark between 1 January 1995 and 30 June 2012. The researchers have looked at all infections that have been treated from birth and also at the subsequent risk of childhood and adolescent psychiatric disorders.

“Hospital admissions with infections are particularly associated with an increased risk of mental disorders, but so too are less severe infections that are treated with medicine from the patient’s own general practitioner,” says Ole Köhler-Forsberg from Aarhus University and Aarhus University Hospital’s Psychoses Research Unit. He is one of the researchers behind the study.

The study showed that children who had been hospitalised with an infection had an 84 per cent increased risk of suffering a mental disorder and a 42 per cent increased risk of being prescribed medicine to treat mental disorders. Furthermore, the risk for a range of specific mental disorders was also higher, including psychotic disorders, OCD, tics, personality disorders, autism and ADHD.

“This knowledge increases our understanding of the fact that there is a close connection between body and brain and that the immune system can play a role in the development of mental disorders. Once again research indicates that physical and mental health are closely connected,” says Ole Köhler-Forsberg.

Highest risk following an infection

The study has just been published in JAMA Psychiatry and is a part of the Danish iPSYCH psychiatry project.

“We also found that the risk of mental disorders is highest right after the infection, which supports the infection to some extent playing a role in the development of the mental disorder,” says Ole Köhler-Forsberg.

It therefore appears that infections and the inflammatory reaction that follows afterwards can affect the brain and be part of the process of developing severe mental disorders. This can, however, also be explained by other causes, such as some people having a genetically higher risk of suffering more infections and mental disorders.

The new knowledge could have importance for further studies of the immune system and the importance of infections for the development of a wide range of childhood and adolescent mental disorders for which the researchers have shown a correlation. This is the assessment of senior researcher on the study, Research Director Michael Eriksen Benrós from the Psychiatric Centre Copenhagen at Copenhagen University hospital.

“The temporal correlations between the infection and the mental diagnoses were particularly notable, as we observed that the risk of a newly occurring mental disorder was increased by 5.66 times in the first three months after contact with a hospital due to an infection and were also increased more than twofold within the first year,” he explains.

Michael Eriksen Benrós stresses that the study can in the long term lead to increased focus on the immune system and how infections play a role in childhood and adolescent mental disorders.

“It can have a consequence for treatment and the new knowledge can be used in making the diagnosis when new psychiatric symptoms occur in a young person. But first and foremost it corroborates our increasing understanding of how closely the body and brain are connected,” he says.