Crows Shown to Build Complex Tools from Multiple Separate Parts, Something Only Great Apes and Humans Have Been Shown Doing

Crows continue to prove that they have amazing attributes unique among animals. Crows likely have more to teach humans that study them about cognitive processes, which would aid understanding of the human mind.

Well, we didn’t think it was possible, but we should have had more faith in our feathered corvid friends: crows just got even cooler. Researchers have discovered that crows don’t just use single objects as tools; they can also make them out of multiple parts that are individually useless.

Let that sink in for a moment.

We already knew that corvids – crows and ravens – are capable of reasoning cause and effect, solving multi-step puzzles, planning for the future and even fashioning simple tools out of sticks and paper.

But making compound tools is something that has only ever been observed before in primates – specifically, humans and and great apes.

Even young humans take several years to be able to learn this skill, because cognitively speaking, it’s actually quite complex. It requires the ability to anticipate the properties of objects, and to be able to mentally map the consequences of putting them together prior to doing so.

As such, it’s considered a pretty important milestone when it comes to brain evolution. So observing it in birds is pretty spectacular.

“The finding is remarkable because the crows received no assistance or training in making these combinations, they figured it out by themselves,” said ornithologist Auguste von Bayern of the Max Planck Institute for Ornithology and the University of Oxford.

The team conducted their research on eight New Caledonian crows (Corvus moneduloides), a bird well known for its intelligence.

Almost 1000 New Genes Related to Intelligence Found

The deeper understanding of intelligence allows for it to be recreated, utilized and optimized more effectively. There are certainly more than enough problems in the world — more intelligence could be very helpful in solving them.

Researchers have identified over 1,016 specific genes associated with intelligence, the vast majority of which are unknown to science.

An international team conducted a large-scale genetic association study of intelligence and discovered 190 new genomic loci and 939 new genes linked with intelligence, significantly expanding our understanding of the genetic bases of cognitive function.

Led by statistical geneticist Danielle Posthuma from Vrije Universiteit Amsterdam in the Netherlands, the researchers performed a genome-wide association study (GWAS) of almost 270,000 people from 14 independent cohorts of European ancestry.

All these people took part in neurocognitive tests that measured their intelligence, and when researchers contrast their scores with variations in the participants’ DNA – called single nucleotide polymorphisms (SNPs) – you can see which mutations are associated with high intelligence.

From over 9 million mutations detected in the sample, Posthuma’s team identified 205 regions in DNA code linked with intelligence (only 15 of which had been isolated before), and 1,016 specific genes (77 of which had already been discovered).

According to the team, the genes that make for smartness also look to confer a protective effect to overall cognitive health, with the analysis finding a negative correlation with Alzheimer’s disease, attention deficit/hyperactivity disorder, depressive symptoms, and schizophrenia.

The intelligence genes were however correlated with increased instances of autism, and also longevity, suggesting people with these genetic underpinnings of high intelligence are more likely to live longer.

“Our results indicate overlap in the genetic processes involved in both cognitive functioning and neurological and psychiatric traits and provide suggestive evidence of causal associations that may drive these correlations,” the researchers write.

“These results are important for understanding the biological underpinnings of cognitive functioning and contribute to understanding of related neurological and psychiatric disorders.”

Benefits to Certain Types of Dark Chocolate

Why hasn’t this been studied much before?

New research shows there might be health benefits to eating certain types of dark chocolate. Findings from two studies being presented today at the Experimental Biology 2018 annual meeting in San Diego show that consuming dark chocolate that has a high concentration of cacao (minimally 70% cacao, 30% organic cane sugar) has positive effects on stress levels, inflammation, mood, memory and immunity. While it is well known that cacao is a major source of flavonoids, this is the first time the effect has been studied in human subjects to determine how it can support cognitive, endocrine and cardiovascular health.

Lee S. Berk, DrPH, associate dean of research affairs, School of Allied Health Professions and a researcher in psychoneuroimmunology and food science from Loma Linda University, served as principal investigator on both studies.

“For years, we have looked at the influence of dark chocolate on neurological functions from the standpoint of sugar content — the more sugar, the happier we are,” Berk said. “This is the first time that we have looked at the impact of large amounts of cacao in doses as small as a regular-sized chocolate bar in humans over short or long periods of time, and are encouraged by the findings. These studies show us that the higher the concentration of cacao, the more positive the impact on cognition, memory, mood, immunity and other beneficial effects.”

The flavonoids found in cacao are extremely potent antioxidants and anti-inflammatory agents, with known mechanisms beneficial for brain and cardiovascular health.