Solution to Harmful Algal Blooms

Harmful algal blooms are often caused by nutrient pollution via overused chemicals such as phosphorous. These algal blooms regularly represent threats to water-based freshwater ecosystems, and so it’s useful that a solution to this problem is being introduced more.

A cheap, safe and effective method of dealing with harmful algal blooms is on the verge of being introduced following successful field and lab tests.

Moves to adopt use of hydrogen peroxide (H2O2) as an effective treatment against toxic algae are already underway following the results of new research by a team from the John Innes Centre and the University of East Anglia (UEA.)

Successful trials last summer showed that H2O2 was effective against the golden algae, Prymnesium parvum. This is responsible for millions of fish kills worldwide each year and a threat to the £550m economy of the Broads National Park where trials are taking place.

Now follow up lab tests have demonstrated that controlled doses of the versatile chemical compound could be even more effective in dealing with cyanobacteria commonly known as blue green algae — a major public health hazard and potentially fatal to dogs and livestock.

Some of these exciting results are published today in the journal Biochemical Society Transactions along with a series of other scientific developments related to algal communities in the Broads National Park; one of the UK’s most popular and environmentally important network of waterways.

Dr Ben Wagstaff, one of the authors of the study from the John Innes Centre said: “We’ve demonstrated that the use of hydrogen peroxide is a practical, relatively easy way of managing these blooms.

“Work has already started to put together protocols for the use of hydrogen peroxide to control Prymnesium and our research showed that blue green algae are even more susceptible. You can potentially use even lower doses to wipe out blue-green blooms.”

The work in the Broads National Park could have widespread implications for the way harmful algal blooms are managed in waterways worldwide.


Biodiversity Losses Increase Risks of Domino Effect of Further Extinctions

This phenomenon is referred to as an “extinction cascade.”

New research shows that the loss of biodiversity can increase the risk of “extinction cascades,” where an initial species loss leads to a domino effect of further extinctions.

The researchers, from the University of Exeter, showed there is a higher risk of extinction cascades when other species are not present to fill the “gap” created by the loss of a species.

Even if the loss of one species does not directly cause knock-on extinctions, the study shows that this leads to simpler ecological communities that are at greater risk of “run-away extinction cascades” with the potential loss of many species.

With extinction rates at their highest levels ever and numerous species under threat due to human activity, the findings are a further warning about the consequences of eroding biodiversity.

“Interactions between species are important for ecosystem (a community of interacting species) stability,” said Dr Dirk Sanders, of the Centre for Ecology and Conservation at the University of Exeter’s Penryn Campus in Cornwall. “And because species are interconnected through multiple interactions, an impact on one species can affect others as well.

“It has been predicted that more complex food webs will be less vulnerable to extinction cascades because there is a greater chance that other species can step in and buffer against the effects of species loss.

“In our experiment, we used communities of plants and insects to test this prediction.”

The researchers removed one species of wasp and found that it led to secondary extinctions of other, indirectly linked, species at the same level of the food web.

This effect was much stronger in simple communities than for the same species within a more complex food web.

Dr Sanders added: “Our results demonstrate that biodiversity loss can increase the vulnerability of ecosystems to secondary extinctions which, when they occur, can then lead to further simplification causing run-away extinction cascades.”


The loss of a predator can initiate a cascade, such as in the case of wolves, where their extinction on one mountain can cause a large rise in the number of deer. This larger number of deer then eats more plant material than they would have before. This reduction in vegetation can cause extinctions in any species that also relies on the plants, but are potentially less competitive, such as rabbits or insects.

Add this research to one of the many reasons why rigorously addressing climate change — which can destabilize environments — is of paramount importance.