Powerful New Type of Antibiotics Found in Dirt

The antibiotic type has the potential to kill MRSA. In an age where antimicrobial resistance is already at dangerous levels, valuable new approaches — such as what’s described in the article — are needed.

The modern medical era began when an absent-minded British scientist named Alexander Fleming returned from vacation to find that one of the petri dishes he forgot to put away was covered in a bacteria-killing mould. He had discovered penicillin, the world’s first antibiotic.

Ninety years later, the world faces an antibiotic crisis.

Superbugs have evolved resistance to dozens of drugs in doctors’ arsenals, leading to infections that are increasingly difficult to treat. Global deaths from antibiotic-resistant infections are predicted to hit 10 million a year by 2050.

So in labs around the world, scientists are racing against time tocultivatenew microbe-destroying molecules – but most of the low-hanging fruit has already been picked.

With due respect to Fleming, microbiologist Sean Brady thinks it’s time to shift tactics. Instead of growing antibiotics in a petri dish, he hopes to find them in the ground.

“Every place you step, there’s 10,000 bacteria, most of which we’ve never seen,” said Brady, an associate professor at Rockefeller University in New York.

Many of these bacteria behave in ways that aren’t yet understood and produce molecules that we haven’t been seen before.

That idea is beginning to pay off: in a study published Monday in the journal Nature Microbiology, he and his colleagues report the discovery of a new class of antibiotic extracted from unknown microorganisms living in the soil.

This class, which they call malacidins, kills several superbugs – including the dreaded methicillin-resistant Staphylococcus aureus (MRSA) – without engendering resistance.

You won’t find this antibiotic at your pharmacy next week, Brady cautioned. It takes years for a novel molecule to be developed, tested and approved for distribution.

But its discovery is proof of a powerful principle, he said: a world of potentially useful untapped biodiversity is still waiting to be discovered.

Though antibiotics are prized for their ability to combat the microbes that make humans sick, most of the drugs come from bacteria.

For example, streptomycin, which has been used to treat tuberculosis and plague, is produced by the bacterium Streptomyces griseus. (This microbe was originally found in the dirt of a New Jersey farm field, though the antibiotic research was conducted using cell cultures.)

Bacteria have been fighting one another for billions of years – far, far longer than humans have been around – so it’s hardly surprising that they have evolved all the best weapons.

Yet the vast majority of these microbes don’t grow well under controlled laboratory conditions, making them difficult to study.

“Maybe, using that simple culture-based approach, we’ve missed most of the chemistry that are produced by bacteria,” Brady said.

It would be better to derive interesting molecules directly from the environment. And with the advent of metagenomics, techniques that allow all the genetic material in a sample to be sequenced en masse, researchers can do just that.

Immense Amount of Mercury Found in the Northern Permafrost, Posing Threats to Human Health

There’s a potent chance that this revelation will return in the coverage of a significant news story in the future. Mercury isn’t the only danger hidden in the permafrost, of course, as greenhouse gases such as methane are also found there too. And as methane traps about 86 times more heat than an equivalent amount of carbon dioxide does, that makes its potential of escalating climate change worrisome.

Mercury though is yet another confirmation that climate change is a truly serious problem that must be addressed. It wouldn’t be much of a surprise to find other worrying threats waiting to be melted in the permafrost either.

180205134238_1_540x360 - Copy

Researchers have discovered permafrost in the northern hemisphere stores massive amounts of natural mercury, a finding with significant implications for human health and ecosystems worldwide.

In a new study, scientists measured mercury concentrations in permafrost cores from Alaska and estimated how much mercury has been trapped in permafrost north of the equator since the last Ice Age.

The study reveals northern permafrost soils are the largest reservoir of mercury on the planet, storing nearly twice as much mercury as all other soils, the ocean and the atmosphere combined.

The new study was published today in Geophysical Research Letters, a journal of the American Geophysical Union.

“This discovery is a game-changer,” said Paul Schuster, a hydrologist at the U.S. Geological Survey in Boulder, Colorado and lead author of the new study. “We’ve quantified a pool of mercury that had not been done previously, and the results have profound implications for better understanding the global mercury cycle.”

Warmer air temperatures due to climate change could thaw much of the existing permafrost layer in the northern hemisphere. This thawing permafrost could release a large amount of mercury that could potentially affect ecosystems around the world. Mercury accumulates in aquatic and terrestrial food chains, and has harmful neurological and reproductive effects on animals.

“There would be no environmental problem if everything remained frozen, but we know the Earth is getting warmer,” Schuster said. “Although measurement of the rate of permafrost thaw was not part of this study, the thawing permafrost provides a potential for mercury to be released — that’s just physics.”

The new findings have major implications for understanding how Earth stores mercury and for human and environmental health, according to James Shanley, a research hydrologist at the U.S. Geological Survey in Montpelier, Vermont, who was not involved with the new research.

“This study is very novel and makes a big discovery in an area that was previously somewhat ignored,” Shanley said. “It shows permafrost represents a huge source of mercury, and if it thaws due to climate change the mercury could be released and could significantly add to the global mercury burden.”

[…]

The study found approximately 793 gigagrams, or more than 15 million gallons, of mercury is frozen in northern permafrost soil. That is roughly 10 times the amount of all human-caused mercury emissions over the last 30 years, based on emissions estimates from 2016.

The study also found all frozen and unfrozen soil in northern permafrost regions contains a combined 1,656 gigagrams of mercury, making it the largest known reservoir of mercury on the planet. This pool houses nearly twice as much mercury as soils outside of the northern permafrost region, the ocean and the atmosphere combined.

The effects of the released mercury

Scientists are still unsure how much of the stored mercury would affect ecosystems if the permafrost were to thaw. One major question revolves around how much of the mercury would leach out of the soil into surrounding waterways, according to Steve Sebestyen, a research hydrologist at the USDA Forest Service in Grand Rapids, Minnesota, who was not involved with the new research.

If the mercury is transported across waterways, it could be taken up by microorganisms and transformed into methylmercury, he said. This form of mercury is a dangerous toxin that causes neurological effects in animals ranging from motor impairment to birth defects.

“There’s a significant social and human health aspect to this study,” Sebestyen said. “The consequences of this mercury being released into the environment are potentially huge because mercury has health effects on organisms and can travel up the food chain, adversely affecting native and other communities.”

[…]

The release of mercury could also have far-reaching global consequences, according to Shanley. Mercury released into the atmosphere can travel large distances and could affect communities and ecosystems thousands of miles away from the release site, he said.

Schuster believes his team’s research gives policymakers and scientists new numbers to work with and calibrate their models as they begin to study this new phenomenon in more detail. He intends to release another study modeling the release of mercury from permafrost due to climate change, and said this work changes scientists’ perspective of the global mercury cycle.

“24 percent of all the soil above the equator is permafrost, and it has this huge pool of locked-up mercury,” he said. “What happens if the permafrost thaws? How far will the mercury travel up the food chain? These are big-picture questions that we need to answer.”

Bacteria Can Acquire Antibiotic Resistance from Rival Bacteria, New Research Proves

It seems as though this is really important research into antibiotic resistance, as new metrics based on this research will need to be used to evaluate the dangerousness of antibiotic resistant bacteria in the future. The World Health Organization has said that “antimicrobial resistance is a global health emergency,” and reports for years have warned of the trillions of dollars and millions of lives that could be lost if this antibiotic resistance problem isn’t addressed.

Bacteria not only develop resistance to antibiotics, they also can pick it up from their rivals. Researchers have demonstrated that some bacteria inject a toxic cocktail into their competitors causing cell lysis and death. Then, by integrating the released genetic material, which may also carry drug resistance genes, the predator cell can acquire antibiotic resistance.

The frequent and sometimes careless use of antibiotics leads to an increasingly rapid spread of resistance. Hospitals are a particular hot spot for this. Patients not only introduce a wide variety of pathogens, which may already be resistant but also, due to the use of antibiotics to combat infections, hospitals may be a place where anti-microbial resistance can develop and be transferred from pathogen to pathogen. One of these typical hospital germs is the bacterium Acinetobacter baumannii. It is also known as the “Iraq bug” because multidrug-resistant bacteria of this species caused severe wound infections in American soldiers during the Iraq war.

Multidrug-resistant bacteria due to gene exchange

The emergence and spread of multidrug resistance could be attributed, among other things, to the special skills of certain bacteria: Firstly, they combat their competitors by injecting them with a cocktail of toxic proteins, so-called effectors, using the type VI secretion system (T6SS), a poison syringe. And secondly, they are able to uptake and reuse the released genetic material. In the model organism Acinetobacter baylyi, a close relative of the Iraq bug, Prof. Marek Basler’s team at the Biozentrum of the University of Basel, has now identified five differently acting effectors. “Some of these toxic proteins kill the bacterial competition very effectively, but do not destroy the cells,” explains Basler. “Others severely damage the cell envelope, which leads to lysis of the attacked bacterium and hence the release of its genetic material.”

The predator bacteria take up the released DNA fragments. If these fragments carry certain drug resistance genes, the specific resistance can be conferred upon the new owner. As a result, the antibiotic is no longer effective and the bacterium can reproduce largely undisturbed.

Pathogens with such abilities are a major problem in hospitals, as through contact with other resistant bacteria they may accumulate resistance to many antibiotics — the bacteria become multidrug-resistant. In the worst case, antibiotic treatments are no longer effective, thus nosocomial infections with multidrug-resistant pathogens become a deadly threat to patients.

Toxic proteins and antitoxins

“The T6SS, as well as a set of different effectors, can also be found in other pathogens such as those which cause pneumonia or cholera,” says Basler. Interestingly, not all effectors are sufficient to kill the target cell, as many bacteria have developed or acquired antitoxins — so-called immunity proteins. “We have also been able to identify the corresponding immunity proteins of the five toxic effectors in the predator cells. For the bacteria it makes absolute sense to produce not only a single toxin, but a cocktail of various toxins with different effects,” says Basler. “This increases the likelihood that the rivals can be successfully eliminated and in some cases also lysed to release their DNA.”

Conquest of new environmental niches

Antibiotics and anti-microbial resistance have existed for a long time. They developed through the coexistence of microorganisms and enabled bacteria to defend themselves against enemies or to eliminate competitors. This is one of the ways in which bacteria can conquer and colonize new environmental niches. With the use of antibiotics in medicine, however, the natural ability to develop resistance has become a problem. This faces researchers with the challenge of continually developing new antibiotics and slowing down the spread of drug resistance.

Fracking Endangers Localized Infant Health

The results of fracking are in actuality worse than the study details. The practice of fracking should be banned for a variety of reasons — including the contamination of drinking water reserves — and the dangers posed to infant health provide another example of why.

Health risks increase for infants born to mothers living within 2 miles of a hydraulic fracturing site, according to a study published Dec. 13 in Science Advances. The research team found that infants born within a half a mile from a fracking site were 25 percent more likely to be born at low birth weights, leaving them at greater risk of infant mortality, ADHD, asthma, lower test scores, lower schooling attainment and lower lifetime earnings.

“Given the growing evidence that pollution affects babies in utero, it should not be surprising that fracking, which is a heavy industrial activity, has negative effects on infants,” said co-author Janet M. Currie, the Henry Putnam Professor of Economics and Public Affairs at Princeton University.

“As local and state policymakers decide whether to allow hydraulic fracturing in their communities, it is crucial that they carefully examine the costs and benefits, including the potential impacts from pollution,” said study co-author Michael Greenstone, the Milton Friedman Professor in Economics and director of the Energy Policy Institute at the University of Chicago. “This study provides the strongest large-scale evidence of a link between the pollution that stems from hydraulic fracturing activities and our health, specifically the health of babies.”

Air Pollution Exposure to Adults Over 60 is Found to Cancel Health Benefits of Exercise for Them

Reason #5533 for the world to use energy sources other than fossil fuels.

Exposure to air pollution on city streets is enough to counter the beneficial health effects of exercise in older adults, according to new research.

The findings, published in The Lancet, show that short term exposure to air pollution in built up areas like London’s busy Oxford Street can prevent the positive effects on the heart and lungs that can be gained from walking.

According to the research, led by Imperial College London and Duke University, the findings add to the growing body of evidence showing the negative impacts of urban air pollution on cardiovascular and respiratory health. The authors say the effects could potentially apply to other age groups as well and highlight the need for stricter air quality limits and greater access to green spaces.

Previous research has found that diesel exhaust fumes, particularly fine particulate matter air pollution, has been associated with an increased risk of cardiovascular disease and death, and can cause a worsening of diseases of the airways, such as asthma.

The latest study, funded by the British Heart Foundation, is the first to show the negative effects on healthy people, people with a chronic lung condition linked with smoking called Chronic Obstructive Pulmonary Disease (COPD), and those with coronary heart disease — which affects the supply of blood to the heart.

“These findings are important as for many people, such as the elderly or those with chronic disease, very often the only exercise they can do is to walk,” said senior author Fan Chung, Professor of Respiratory Medicine and Head of Experimental Studies Medicine at National Heart & Lung Institute at Imperial College London. “Our research suggests that we might advise older adults to walk in green spaces, away from built-up areas and pollution from traffic,” he added.