AI System Successfully Predicts Alzheimer’s Years in Advance

Important research of Alzheimer’s disease since it’s one of those diseases where the treatment will be more effective the earlier it’s caught.

Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according to a study published in the journal Radiology.

Timely diagnosis of Alzheimer’s disease is extremely important, as treatments and interventions are more effective early in the course of the disease. However, early diagnosis has proven to be challenging. Research has linked the disease process to changes in metabolism, as shown by glucose uptake in certain regions of the brain, but these changes can be difficult to recognize.

“Differences in the pattern of glucose uptake in the brain are very subtle and diffuse,” said study co-author Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California in San Francisco (UCSF). “People are good at finding specific biomarkers of disease, but metabolic changes represent a more global and subtle process.”

The study’s senior author, Benjamin Franc, M.D., from UCSF, approached Dr. Sohn and University of California, Berkeley, undergraduate student Yiming Ding through the Big Data in Radiology (BDRAD) research group, a multidisciplinary team of physicians and engineers focusing on radiological data science. Dr. Franc was interested in applying deep learning, a type of AI in which machines learn by example much like humans do, to find changes in brain metabolism predictive of Alzheimer’s disease.

The researchers trained the deep learning algorithm on a special imaging technology known as 18-F-fluorodeoxyglucose positron emission tomography (FDG-PET). In an FDG-PET scan, FDG, a radioactive glucose compound, is injected into the blood. PET scans can then measure the uptake of FDG in brain cells, an indicator of metabolic activity.

The researchers had access to data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a major multi-site study focused on clinical trials to improve prevention and treatment of this disease. The ADNI dataset included more than 2,100 FDG-PET brain images from 1,002 patients. Researchers trained the deep learning algorithm on 90 percent of the dataset and then tested it on the remaining 10 percent of the dataset. Through deep learning, the algorithm was able to teach itself metabolic patterns that corresponded to Alzheimer’s disease.

Finally, the researchers tested the algorithm on an independent set of 40 imaging exams from 40 patients that it had never studied. The algorithm achieved 100 percent sensitivity at detecting the disease an average of more than six years prior to the final diagnosis.

“We were very pleased with the algorithm’s performance,” Dr. Sohn said. “It was able to predict every single case that advanced to Alzheimer’s disease.”

Although he cautioned that their independent test set was small and needs further validation with a larger multi-institutional prospective study, Dr. Sohn said that the algorithm could be a useful tool to complement the work of radiologists — especially in conjunction with other biochemical and imaging tests — in providing an opportunity for early therapeutic intervention.

“If we diagnose Alzheimer’s disease when all the symptoms have manifested, the brain volume loss is so significant that it’s too late to intervene,” he said. “If we can detect it earlier, that’s an opportunity for investigators to potentially find better ways to slow down or even halt the disease process.”

Why Changing the Clocks With Daylight-Saving Time is Absurd

It’s an antiquated practice that has many people driving home from work (at around 5 o’clock) in relative darkness, likely leading to more traffic accidents and less quality time outside as well.

Daylight-saving time (not “daylight-savings” time) was created during World War I to decrease energy use. The practice was implemented year-round in 1942, during WWII. Not waking up in the dark, the thinking went, would decrease fuel use for lighting and heating. That would help conserve energy supplies to help the war effort.

[…]

According to advocacy groups like Standardtime.com, which are trying to abolish daylight-saving time, claims about saving energy are unproven. “If we are saving energy, let’s go year-round with daylight-saving time,” the group says. “If we are not saving energy, let’s drop daylight-saving time!”

In his book Spring Forward: The Annual Madness of Daylight-Saving Time, author Michael Downing says there isn’t much evidence that daylight-saving actually decreases energy use.

In fact, sometimes DST seems to increase energy use.

For example, in Indiana – where daylight-saving time was implemented statewide in 2006 – researchers saw that people used less electricity for light, but those gains were canceled out by people who used more air conditioning during the early evenings.

(That’s because 6pm felt more like 5pm, when the sun still shines brightly in the summer and homes haven’t had the chance to cool off.)

DST also increases gasoline consumption, something Downing says the petroleum industry has known since the 1930s. This is probably because evening activities – and the vehicle use they require – increase with that extra daylight.

Changing the clocks also causes air travel synchronisation headaches, which sometimes leads to travel delays and lost revenue, airlines have reportedly said.

There are also health issues associated with changing the clocks. Similar to the way jet-lag makes you feel all out of whack, daylight-saving time is like scooting one time zone over.

This can disrupt our sleep, metabolism, mood, stress levels, and other bodily rhythms. One study suggests recovery can take three weeks.

In the days after DST starts or ends, in fact, researchers have observed a spike in heart attacks, increased numbers of work injuries, more automobile accidents, and higher suicide rates.

[…]

The absence of major energy-saving benefits from DST – along with its death toll, health impacts, and economic ramifications – are reason enough to get rid of the ritual.

Hundreds of Supplements Tainted With Hidden Drugs

This is why people should use caution when taking supplements, and it also shows the risk of inadequate corporate oversight. Unlike pharmaceutical drugs, the American supplement industry is barely regulated at all.

The labels promise miracles: Fast Weight Loss! Eliminates Hunger! Burns Calories!

Now new research highlights how hundreds of brands of dietary supplements deliver so much kick from a modest blend of vitamins and herbs. The answer is many labels leave out one important ingredient: a hidden payload of pharmaceutical drugs and experimental chemicals.

A new analysis of 10 years of FDA records reveals that from 2007 to 2016, almost 750 dietary supplements were found to be contaminated with secret doses of totally unregulated drugs, including prescription medicines, banned and unapproved chemicals, and designer steroids.

Over 20 percent of these offending products contained more than one unapproved drug ingredient, and numerous contained a cocktail of clandestine chemicals – in two cases, as many as six unlisted ingredients.

For a US$35 billion industry patronised by about half of American adults, it’s possible this data could be just the tip of the iceberg, too.

“The drug ingredients in these dietary supplements have the potential to cause serious adverse health effects owing to accidental misuse, overuse, or interaction with other medications, underlying health conditions, or other pharmaceuticals within the supplement,” researchers from the California Department of Food and Agriculture, Sacramento, explain in their paper.

Given that supplement use is associated with some 23, 000 ER visits and 2,000 hospitalisations in the US each year, it’s clear we’re looking at a big problem here, but what’s even more shocking than the brazen selling of these illicit additives is how tame and toothless the FDA’s official actions were.

Of 746 products identified as adulterated by the FDA, just 360 (48 percent) were subsequently recalled, leaving more than half of the contaminated supplements available for sale.

“The agency’s failure to aggressively use all available tools to remove pharmaceutically adulterated supplements from commerce leaves consumers’ health at risk,” writes general internist Pieter Cohen from Harvard Medical School in a commentary on the new research.

Many of the tainted supplements analysed in the study contained sildenafil (the active ingredient of Viagra) to boost their powers of sexual enhancement. Another erectile dysfunction drug, tadalafil, was also common.

Other chemicals included hidden antidepressants, a withdrawn weight loss drug called sibutramine, and undeclared anabolic steroids or steroid-like substances.

It’s been argued however that since almost 75 percent of the offending supplements were sold online or through international mail order, they don’t represent the ‘mainstream’ of the supplements industry.

“These come from dark corners of the internet,” president of the Natural Products Association, Daniel Fabricant, told the San Francisco Chronicle.

“They’re not what you get at your health food store.”

Still, given that none of these products are actually subjected to the same stringent tests reserved for pharmaceutical drugs, it’s possible any supplement could contain anything – which is why Cohen advises choosing products that only contain a single ingredient and avoiding products that purport to offer spurious, medical-sounding benefits.

Why? Because as this research shows, many supplements turn out to be medicine after all – only it’s an unknown drug, potentially a banned one, and there’s no way of measuring your dose.

“If the company is saying it works like Viagra or you’re going to gain muscle like you’re on steroids – that’s not a supplement. That’s a drug,” Fabricant says.

“Dietary supplements are meant to maintain health, not to take 30 minutes before sex.”

The findings are reported in JAMA Network Open.

Slowing the Aging Process by Eating Fruits and Vegetables

Why fruits and vegetables are important — they contain a chemical that reduces some of the negative effects of aging, something that’s obviously valuable. The research is trying to use the chemical in a drug, but it’s good that it demonstrates that point.

Previous research published earlier this year in Nature Medicine involving University of Minnesota Medical School faculty Paul D. Robbins and Laura J. Niedernhofer and Mayo Clinic investigators James L. Kirkland and Tamara Tchkonia, showed it was possible to reduce the burden of damaged cells, termed senescent cells, and extend lifespan and improve health, even when treatment was initiated late in life. They now have shown that treatment of aged mice with the natural product Fisetin, found in many fruits and vegetables, also has significant positive effects on health and lifespan.

As people age, they accumulate damaged cells. When the cells get to a certain level of damage they go through an aging process of their own, called cellular senescence. The cells also release inflammatory factors that tell the immune system to clear those damaged cells. A younger person’s immune system is healthy and is able to clear the damaged cells. But as people age, they aren’t cleared as effectively. Thus they begin to accumulate, cause low level inflammation and release enzymes that can degrade the tissue.

Robbins and fellow researchers found a natural product, called Fisetin, reduces the level of these damaged cells in the body. They found this by treating mice towards the end of life with this compound and see improvement in health and lifespan. The paper, “Fisetin is a senotherapeutic that extends health and lifespan,” was recently published in EBioMedicine.

“These results suggest that we can extend the period of health, termed healthspan, even towards the end of life,” said Robbins. “But there are still many questions to address, including the right dosage, for example.”

One question they can now answer, however, is why haven’t they done this before? There were always key limitations when it came to figuring out how a drug will act on different tissues, different cells in an aging body. Researchers didn’t have a way to identify if a treatment was actually attacking the particular cells that are senescent, until now.

Even Brief Workouts Quickly Improve Memory Function

Exercise has numerous benefits, and more and more continues to be found about how valuable consistent exercise is. Having a stronger memory will often improve performance in a variety of ways, and thus this research should give people more motivation to workout more.

People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan’s University of Tsukuba found that even very light workouts can increase the connectivity between parts of the brain responsible for memory formation and storage.

In a study of 36 healthy young adults, the researchers discovered that a single 10-minute period of mild exertion can yield considerable cognitive benefits. Using high-resolution functional magnetic resonance imaging, the team examined subjects’ brains shortly after exercise sessions and saw better connectivity between the hippocampal dentate gyrus and cortical areas linked to detailed memory processing.

Their results were published today in Proceedings of the National Academy of Sciences.

“The hippocampus is critical for the creation of new memories; it’s one of the first regions of the brain to deteriorate as we get older — and much more severely in Alzheimer’s disease,” said project co-leader Michael Yassa, UCI professor and Chancellor’s Fellow of neurobiology & behavior. “Improving the function of the hippocampus holds much promise for improving memory in everyday settings.”

The neuroscientists found that the level of heightened connectivity predicted the degree of recall enhancement.

Yassa, director of UCI’s Center for the Neurobiology of Learning and Memory and the recently launched UCI Brain Initiative, said that while prior research has centered on the way exercise promotes the generation of new brain cells in memory regions, this new study demonstrates a more immediate impact: strengthened communication between memory-focused parts of the brain.

“We don’t discount the possibility that new cells are being born, but that’s a process that takes a bit longer to unfold,” he said. “What we observed is that these 10-minute periods of exercise showed results immediately afterward.”

A little bit of physical activity can go a long way, Yassa stressed. “It’s encouraging to see more people keeping track of their exercise habits — by monitoring the number of steps they’re taking, for example,” he said. “Even short walking breaks throughout the day may have considerable effects on improving memory and cognition.”

Yassa and his colleagues at UCI and at the University of Tsukuba are extending this avenue of research by testing older adults who are at greater risk of age-related mental impairment and by conducting long-term interventions to see if regular, brief, light exercise done daily for several weeks or months can have a positive impact on the brain’s structure and function in these subjects.

Combining Antibiotics Changes How Effective They Are

The implications from this should be studied more in light of the major antibiotic resistance problem this century. Among other things, the research found that the compound vanillin (which gives vanilla its taste) combined with an antibiotic that has mostly stopped being used (spectinomycin) increased the effectiveness of the antibiotic.

The effectiveness of antibiotics can be altered by combining them with each other, non-antibiotic drugs or even with food additives. Depending on the bacterial species, some combinations stop antibiotics from working to their full potential whilst others begin to defeat antibiotic resistance, report EMBL researchers and collaborators in Nature on July 4.

In the first large-scale screening of its kind, scientists profiled almost 3000 drug combinations on three different disease-causing bacteria. The research was led by EMBL group leader Nassos Typas.

Overcoming antibiotic resistance

Overuse and misuse of antibiotics has led to widespread antibiotic resistance. Specific combinations of drugs can help in fighting multi-drug resistant bacterial infections, but they are largely unexplored and rarely used in clinics. That is why in the current paper, the team systematically studied the effect of antibiotics paired with each other, as well as with other drugs and food additives in different species.

Whilst many of the investigated drug combinations lessened the antibiotics’ effect, there were over 500 drug combinations which improved antibiotic outcome. A selection of these positive pairings was also tested in multi-drug resistant bacteria, isolated from infected hospital patients, and were found to improve antibiotic effects.

[…]

According to Nassos Typas, combinations of drugs that decrease the effect of antibiotics could also be beneficial to human health. “Antibiotics can lead to collateral damage and side effects because they target healthy bacteria as well. But the effects of these drug combinations are highly selective, and often only affect a few bacterial species. In the future, we could use drug combinations to selectively prevent the harmful effects of antibiotics on healthy bacteria. This would also decrease antibiotic resistance development, as healthy bacteria would not be put under pressure to evolve antibiotic resistance, which can later be transferred to dangerous bacteria.”

General principles

This research is the first large-scale screening of drug combinations across different bacterial species in the lab. The compounds used have already been approved for safe use in humans, but investigations in mice and clinical studies are still required to test the effectiveness of particular drug combinations in humans. In addition to identifying novel drug combinations, the size of this investigation allowed the scientists to understand some of the general principles behind drug-drug interactions. This will allow more rational selection of drug pairs in the future and may be broadly applicable to other therapeutic areas.

Health Benefits of ASMR Found in First Study of Its Kind

ASMR provides calming and stimulating sensation with no downsides currently known. It’s worth noting that the phenomenon hasn’t been researched much yet though — there may be more positives or negatives discovered in the future. There’s still an amazing amount that isn’t scientifically known about various aspects of the human mind.

Autonomous Sensory Meridian Response (ASMR) — the relaxing ‘brain tingles’ experienced by some people in response to specific triggers, such as whispering, tapping and slow hand movements — may have benefits for both mental and physical health, according to new research.