Nanorobots Successfully Programmed to Seek and Eliminate Tumors in Major Nanomedicine Study

This is a significant nanotechnology advance, although there’s still progress needed for it in further trials. These nanorobots have yet to be tested on humans, which makes them another advance worth looking for the human trial results on when they’re available.

In a major advancement in nanomedicine, Arizona State University (ASU) scientists, in collaboration with researchers from the National Center for Nanoscience and Technology (NCNST), of the Chinese Academy of Sciences, have successfully programmed nanorobots to shrink tumors by cutting off their blood supply.

“We have developed the first fully autonomous, DNA robotic system for a very precise drug design and targeted cancer therapy,” said Hao Yan, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics and the Milton Glick Professor in the School of Molecular Sciences.

“Moreover, this technology is a strategy that can be used for many types of cancer, since all solid tumor-feeding blood vessels are essentially the same,” said Yan.

The successful demonstration of the technology, the first-of-its-kind study in mammals utilizing breast cancer, melanoma, ovarian and lung cancer mouse models, was published in the journal Nature Biotechnology.

[…]

First and foremost, the team showed that the nanorobots were safe and effective in shrinking tumors.

“The nanorobot proved to be safe and immunologically inert for use in normal mice and, also in Bama miniature pigs, showing no detectable changes in normal blood coagulation or cell morphology,” said Yuliang Zhao, also a professor at NCNST and lead scientist of the international collaborative team.

Most importantly, there was no evidence of the nanorobots spreading into the brain where it could cause unwanted side effects, such as a stroke.

“The nanorobots are decidedly safe in the normal tissues of mice and large animals,” said Guangjun Nie, another professor at the NCNST and a key member of the collaborative team.

The treatment blocked tumor blood supply and generated tumor tissue damage within 24 hours while having no effect on healthy tissues. After attacking tumors, most of the nanorobots were cleared and degraded from the body after 24 hours.

[…]

Yan and his collaborators are now actively pursuing clinical partners to further develop this technology.

“I think we are much closer to real, practical medical applications of the technology,” said Yan. “Combinations of different rationally designed nanorobots carrying various agents may help to accomplish the ultimate goal of cancer research: the eradication of solid tumors and vascularized metastases. Furthermore, the current strategy may be developed as a drug delivery platform for the treatment of other diseases by modification of the geometry of the nanostructures, the targeting groups and the loaded cargoes.”

Developing Edible QR Codes for Future Medications

Quite a different approach than how medicine is administered today. There will need to be safeguards, however, such as by ensuring the legitimacy of the scans through cryptographic verification.

For the last 100 years, researchers have constantly pushed the boundaries for our knowledge about medicine and how different bodies can respond differently to it. However, the methods for the production of medicine have not yet moved itself away from mass production. Many who have a given illness get the same product with equal amount of an active compound.

This production might soon be in the past. In a new study, researchers from the University of Copenhagen together with colleagues from Åbo Akademi University in Finland have developed a new method for producing medicine. They produce a white edible material. Here, they print a QR code consisting of a medical drug.

“This technology is promising, because the medical drug can be dosed exactly the way you want it to. This gives an opportunity to tailor the medication according to the patient getting it,” says Natalja Genina, Assistant Professor at Department of Pharmacy.

Potential for reducing wrong medication and fake medicine

The shape of a QR code also enables storage of data in the “pill” itself.

“Simply doing a quick scan, you can get all the information about the pharmaceutical product. In that sense it can potentially reduce cases of wrong medication and fake medicine,” says Natalja Genina.

The researchers hope that in the future a regular printer will be able to apply the medical drug in the pattern of a QR code, while the edible material will have to be produced in advance to allow on-demand production of medical drug near end-users.

“If we are successful with applying this production method to relatively simple printers, then it can enable the innovative production of personalized medicine and rethinking of the whole supply chain,” says professor Jukka Rantanen from Department of Pharmacy.

The researchers are now working to refine the methods for this medical production.

Nanotechnology Advance Will Enable Cell-Based Drug Delivery in the Future

Nanotechnology will yield some of the biggest advances in medicine for the 21st century. It doesn’t receive as much attention as it should now — judging by the lack of press coverage and the lack of preemptive regulatory safeguards — but it will join the ranks of technology such as artificial intelligence, genetic engineering, and quantum computers in its impact on society.

Scientists have invented a major new advance in DNA nanotechnology. Dubbed ‘single-stranded origami,’ their new strategy uses one long, thin noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — without even a single knot — into the largest, most complex structures to date. The strands forming these structures can be made inside living cells, opening up the potential for nanomedicine.

[…]

This burgeoning field is called DNA origami. Scientist borrowed its moniker from the paper artists who conjure up birds, flowers and planes from imaginatively folding a single sheet of paper.

Similarly, DNA origami scientists are dreaming up a variety of shapes — at a scale one thousand times smaller than a human hair — that they hope will one day revolutionize computing, electronics and medicine.

Now, a team of Arizona State and Harvard scientists has invented a major new advance in DNA nanotechnology. Dubbed “single-stranded origami,” their new strategy uses one long, thin noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — -without even a single knot — into the largest, most complex structures to date.

England’s Chief Medical Officer: Antibiotic Resistance Could Spell End of Modern Medicine

It’s worth posting this warning about antibiotic resistance again. The suggestions I have are to invest in a massive international research effort against antibiotic resistance, seek an end to factory farming, and to convince medical doctors to stop prescribing too many antibiotics. There would also be benefit in trying to prevent people from becoming ill in the first place too.

England’s chief medical officer has repeated her warning of a “post-antibiotic apocalypse” as she urged world leaders to address the growing threat of antibiotic resistance.

Prof Dame Sally Davies said that if antibiotics lose their effectiveness it would spell “the end of modern medicine”. Without the drugs used to fight infections, common medical interventions such as caesarean sections, cancer treatments and hip replacements would become incredibly risky and transplant medicine would be a thing of the past, she said.

“We really are facing – if we don’t take action now – a dreadful post-antibiotic apocalypse. I don’t want to say to my children that I didn’t do my best to protect them and their children,” Davies said.

Health experts have previously said resistance to antimicrobial drugs could cause a bigger threat to mankind than cancer. In recent years, the UK has led a drive to raise global awareness of the threat posed to modern medicine by antimicrobial resistance (AMR).

Each year about 700,000 people around the world die due to drug-resistant infections including tuberculosis, HIV and malaria. If no action is taken, it has been estimated that drug-resistant infections will kill 10 million people a year by 2050.

The UK government and the Wellcome Trust, along with others, have organised a call to action meeting for health officials from around the world. At the meeting in Berlin, the government will announce a new project that will map the spread of death and disease caused by drug-resistant superbugs.

[…]

“It does not really have a ‘face’ because most people who die of drug-resistant infections, their families just think they died of an uncontrolled infection. It will only get worse unless we take strong action everywhere across the globe. We need some real work on the ground to make a difference or we risk the end of modern medicine.”

She added: “Not to be able to effectively treat infections means that caesarean sections, hip replacements, modern surgery, is risky. Modern cancer treatment is risky and transplant medicine becomes a thing of the past.”

Davies said that if the global community did not act then the progress that had been made in Britain may be undermined.

She estimated that about one in three or one in four prescriptions in UK primary care were probably not needed. “But other countries use vastly more antibiotics in the community and they need to start doing as we are, which is reducing usage,” she said. “Our latest data shows that we have reduced human consumption by 4.3% in 2014-15 from the year before.”

Doctors “Sound Alarm Over Drug Resistance”

Antibiotic resistance is among the most serious problems in modern times. There needs to be a massive research effort where the science is kept open so that it advances most efficiently. Humans are risking another disaster similar to the 1918 influenza pandemic by failing to do so.

In only the several decades, the antibiotic problem has gotten a lot worse. I hope that a lot of these problems will be solved in the next few decades, as I think they are going to be key building blocks for a brighter future.

Scientists attending a recent meeting of the American Society for Microbiology reported they had uncovered a highly disturbing trend. They revealed that bacteria containing a gene known as mcr-1 – which confers resistance to the antibiotic colistin – had spread round the world at an alarming rate since its original discovery 18 months earlier. In one area of China, it was found that 25% of hospital patients now carried the gene.

Colistin is known as the “antibiotic of last resort”. In many parts of the world doctors have turned to its use because patients were no longer responding to any other antimicrobial agent. Now resistance to its use is spreading across the globe.

In the words of England’s chief medical officer, Sally Davies: “The world is facing an antibiotic apocalypse.” Unless action is taken to halt the practices that have allowed antimicrobial resistance to spread and ways are found to develop new types of antibiotics, we could return to the days when routine operations, simple wounds or straightforward infections could pose real threats to life, she warns.

That terrifying prospect will be the focus of a major international conference to be held in Berlin this week. Organised by the UK government, the Wellcome Trust, the UN and several other national governments, the meeting will be attended by scientists, health officers, pharmaceutical chiefs and politicians. Its task is to try to accelerate measures to halt the spread of drug resistance, which now threatens to remove many of the major weapons currently deployed by doctors in their war against disease.

The arithmetic is stark and disturbing, as the conference organisers make clear. At present about 700,000 people a year die from drug-resistant infections. However, this global figure is growing relentlessly and could reach 10 million a year by 2050.

The danger, say scientists, is one of the greatest that humanity has faced in recent times. In a drug-resistant world, many aspects of modern medicine would simply become impossible. An example is provided by transplant surgery. During operations, patients’ immune systems have to be suppressed to stop them rejecting a new organ, leaving them prey to infections. So doctors use immunosuppressant cancer drugs. In future, however, these may no longer be effective.

Or take the example of more standard operations, such as abdominal surgery or the removal of a patient’s appendix. Without antibiotics to protect them during these procedures, people will die of peritonitis or other infections. The world will face the same risks as it did before Alexander Fleming discovered penicillin in 1928.

“Routine surgery, joint replacements, caesarean sections, and chemotherapy also depend on antibiotics, and will also be at risk,” says Jonathan Pearce, head of infections and immunity at the UK Medical Research Council. “Common infections could kill again.”

As to the causes of this growing threat, scientists point to the widespread misuse and overuse of antibiotics and other drugs and to the failure of pharmaceutical companies to investigate and develop new sources of general medicines for the future. Western doctors are over-prescribing antibiotics to patients who expect to be given a drug for whatever complaint they have. In many countries, both land and fish farmers use antibiotics as growth promoters and indiscriminately pour them on to their livestock. In the latter case the end result is antibiotics leaching into streams and rivers with alarming results, particularly in Asia.

“In the Ganges during pilgrimage season, there are levels of antibiotics in the river that we try to achieve in the bloodstream of patients,” says Davies. “That is very, very disturbing.”

The creation of these soups of antibiotic-laden waters and banks of drug-soaked soils is ideal for the development of “superbugs”. Rare strains that are resistant to antibiotics start to thrive in farm animals that are raised in these artificial environments and emerge as highly potent infectious agents that then spread across the planet with startling speed. Examples of these include tuberculosis, which was once easily treated but which, in its modern multi-drug-resistant form, known as MDR-TB, now claims the lives of 190,000 people a year.

Another even more revealing example is provided by colistin. “Colistin was developed in the 50s,” says Matthew Avison, reader in molecular biology at Bristol University. “However, its toxic side-effects made it unpopular with doctors. So it was taken up by vets and used in animals. But as resistance – in humans – to other antibiotics has spread, doctors have returned to colistin on the grounds that it was better than nothing.”

[…]

Then there is the issue of travel, one of the biggest problems we face over the spread of antimicrobial resistance, according to Davies, who has spearheaded Britain’s part in the battle to fight its spread around the world.

“One Swedish study followed a group of young backpackers who went off on holiday to different parts of the world. None had resistant bacteria in their guts when they left. When they returned a quarter of them had picked up resistant bugs. That shows the pervasive nature of the problem we face,” she said.

Tourism, personal hygiene, farming, medical practice – all are affected by the issue of antibiotic resistance, and it will be the task of the conference to highlight the most effective and speedy solutions to tackle the crisis.

“In the end, the problem posed to the planet by antimicrobial resistance is not that difficult,” says O’Neill. “All that is required is to get people to behave differently. How you achieve that is not so clear, of course.”

Scientists Develop Medical Camera That Sees Through the Human Body

The camera detects photons, which will aid in internal medical procedures that could make treatment via invasive surgery less necessary than it has been.

Scientists have developed a camera that can see through the human body. The camera is designed to help doctors track medical tools known as endoscopes that are used to investigate a range of internal conditions.

The new device is able to detect sources of light inside the body, such as the illuminated tip of the endoscope’s long flexible tube.

[…]

The new camera takes advantage of advanced technology that can detect individual particles of light, called photons.

Experts have integrated thousands of single photon detectors onto a silicon chip, similar to that found in a digital camera.

[…]

By taking into account both the scattered light and the light that travels straight to the camera, the device is able to work out exactly where the endoscope is located in the body.

Researchers have developed the new camera so that it can be used at the patient’s bedside.

“The ability to see a device’s location is crucial for many applications in healthcare, as we move forwards with minimally invasive approaches to treating disease,” says Kev Dhaliwal.