New Blood Test Offers Better or Equal Skin Cancer Detection Rate than a Biopsy

Skin cancer is the most common cancer in the world, and it’s the one that’s most easily treated when caught early. Since the blood test is less invasive than a biopsy, this new advance should be helpful in convincing more people to receive treatment early on.

It’s a world first. A newly developed blood test is capable of the early detection of melanoma, with over 80 percent accuracy.

It could help save thousands of lives, according to the Australian Edith Cowan University Melanoma Research Group scientists who developed the test.

Melanoma is the most deadly form of skin cancer, claiming 59,782 lives around the world in 2015. Australasia, North America and Europe are the regions most susceptible to the disease.

There’s good news. If caught early, the survival rate for melanoma climbs to 95 percent. But if you miss that early window, your chances will plummet to below 50 percent. This is what the blood test is designed to help prevent.

[…]

The blood test, called MelDX, works by detecting the antibodies the body produces as soon as melanoma develops. The team analysed 1,627 different types of antibodies, and narrowed them down to a combination of 10 that indicate the presence of melanoma in the body.

They then took blood from 104 people with melanoma and 105 healthy controls, and found that MelDX was capable of detecting melanoma with 81.5 percent accuracy.

More specifically, it was able to detect the cancer in 79 percent of the patients with melanoma; and has a false positive rate in only 16 percent in healthy patients.

The detection rate may actually be a little higher than the accuracy of skin biopsies, which, according to a 2012 study, was 76 percent in an Australian public hospital.

That’s not a perfect result, but it does provide a starting point before other, more invasive tests are embarked on; in conjunction with current diagnostic techniques, it could improve early diagnosis – and therefore people’s chance of survival.

The next step, the researchers said, will be to take MelDX to clinical trial, which is currently being organised, and which could help refine the test.

“We envision this taking about three years. If this is successful we would hope to be able to have a test ready for use in pathology clinics shortly afterwards,” said Melanoma Research Group head Mel Ziman.

“The ultimate goal is for this blood test to be used to provide greater diagnostic certainty prior to biopsy and for routine screening of people who are at a higher risk of melanoma, such as those with a large number of moles or those with pale skin or a family history of the disease.”

Meanwhile, there are easy ways you can help protect yourself from melanoma and other skin cancers, including wearing sunscreen, staying in the shade during the hottest hours of the day, and avoiding UV tanning beds.

Breakthrough in Making Much Less Addictive Opioids

Important research this is, for it shows that the powerful pain relief opioids provide doesn’t have to be such a dangerous double-edged sword.

In the US, more than one-third of the population experiences some form of acute or chronic pain; in older adults this number rises to 40 percent.

The most common condition linked to chronic pain is chronic depression, which is a major cause of suicide.

To relieve severe pain, people go to their physician for powerful prescription painkillers, opioid drugs such as morphine, oxycodone and hydrocodone.

Almost all the currently marketed opioid drugs exert their analgesic effects through a protein called the “mu opioid receptor” (MOR).

MORs are embedded in the surface membrane of brain cells, or neurons, and block pain signals when activated by a drug.

However, many of the current opioids stimulate portions of the brain that lead to additional sensations of “rewarding” pleasure, or disrupt certain physiological activities. The former may lead to addiction, or the latter, death.

Which part of the brain is activated plays a vital role in controlling pain. For example, MORs are also present in the brain stem, a region that controls breathing.

Activating these mu receptors not only dulls pain but also slows breathing. Large doses stop breathing, causing death.

Activating MORs in other parts of the brain, including the ventral tegmental area and the nucleus accumbens, block pain and trigger pleasure or reward, which makes them addictive. But so far there is no efficient way to turn these receptors “on” and “off” in specific areas.

But there is another approach because not all opioids are created equal. Some, such as morphine, bind to the receptor and activate two signaling pathways: one mediating pain cessation and the other producing side effects like respiratory depression.

Other drugs favor one pathway more than the other, like only blocking pain – this is the one we want.

“Biased opioids” to kill pain

But MOR isn’t the only opioid receptor. There are two other closely related proteins called kappa and delta, or KOR and DOR respectively, that also alter pain perception but in slightly different ways.

Yet, currently there are only a few opioid medications that target KOR, and none that target DOR. One reason is that the function of these receptors in the brain neurons remains unclear.

Recently KOR has been getting attention as extensive studies from different academic labs show that it blocks pain without triggering euphoria, which means it isn’t addictive.

Another benefit is that it doesn’t slow respiration, which means that it isn’t lethal. But although it isn’t as dangerous as MOR, activating KOR does promote dysphoria, or unease, and sleepiness.

This work suggests it is possible to design a drug that only targets the pain pathway, without side effects. These kind of drugs are called “biased” opioids.

[…]

The exciting news is that researchers in the Roth lab have discovered several promising compounds based on the KOR structure that selectively binds and activates KOR, without cavorting with the more than 330 other related protein receptors.

Now our challenge is to transform these molecules into safer drugs.

Regenerative Bandage Hydrogel Boosts Internal Self-Healing for Wounds

A very notable advance that should become a promising part of healing in the future.

A simple scrape or sore might not cause alarm for most people. But for diabetic patients, an untreated scratch can turn into an open wound that could potentially lead to a limb amputation or even death.

A Northwestern University team has developed a new device, called a regenerative bandage, that quickly heals these painful, hard-to-treat sores without using drugs. During head-to-head tests, Northwestern’s bandage healed diabetic wounds 33 percent faster than one of the most popular bandages currently on the market.

“The novelty is that we identified a segment of a protein in skin that is important to wound healing, made the segment and incorporated it into an antioxidant molecule that self-aggregates at body temperature to create a scaffold that facilitates the body’s ability to regenerate tissue at the wound site,” said Northwestern’s Guillermo Ameer, who led the study. “With this newer approach, we’re not releasing drugs or outside factors to accelerate healing. And it works very well.”

Because the bandage leverages the body’s own healing power without releasing drugs or biologics, it faces fewer regulatory hurdles. This means patients could see it on the market much sooner.

The research was published today, June 11, in the Proceedings of the National Academy of Sciences. Although Ameer’s laboratory is specifically interested in diabetes applications, the bandage can be used to heal all types of open wounds.

[…]

The difference between a sore in a physically healthy person versus a diabetic patient? Diabetes can cause nerve damage that leads to numbness in the extremities. People with diabetes, therefore, might experience something as simple as a blister or small scratch that goes unnoticed and untreated because they cannot feel it to know it’s there. As high glucose levels also thicken capillary walls, blood circulation slows, making it more difficult for these wounds to heal. It’s a perfect storm for a small nick to become a limb-threatening — or life-threatening — wound.

The secret behind Ameer’s regenerative bandage is laminin, a protein found in most of the body’s tissues including the skin. Laminin sends signals to cells, encouraging them to differentiate, migrate and adhere to one another. Ameer’s team identified a segment of laminin — 12 amino acids in length — called A5G81 that is critical for the wound-healing process.

[…]

The bandage’s antioxidant nature counters inflammation. And the hydrogel is thermally responsive: It is a liquid when applied to the wound bed, then rapidly solidifies into a gel when exposed to body temperature. This phase change allows it to conform to the exact shape of the wound — a property that helped it out-perform other bandages on the market.

“Wounds have irregular shapes and depths. Our liquid can fill any shape and then stay in place,” Ameer said. “Other bandages are mostly based on collagen films or sponges that can move around and shift away from the wound site.”

Patients also must change bandages often, which can rip off the healing tissue and re-injure the site. Ameer’s bandage, however, can be rinsed off with cool saline, so the regenerating tissue remains undisturbed.

Not only will the lack of drugs or biologics make the bandage move to market faster, it also increases the bandage’s safety. So far, Ameer’s team has not noticed any adverse side effects in animal models. This is a stark difference from another product on the market, which contains a growth factor linked to cancer.

“It is not acceptable for patients who are trying to heal an open sore to have to deal with an increased risk of cancer,” Ameer said.

Next, Ameer’s team will continue to investigate the bandage in a larger pre-clinical model.

Developing Drug Impairs Process Cancer Cells Use for Growth

It looks like this will be useful later on.

A drug discovered and advanced by The University of Texas MD Anderson Cancer Center’s Institute for Applied Cancer Science (IACS) and the Center for Co-Clinical Trials (CCCT) inhibits a vital metabolic process required for cancer cells’ growth and survival.

IACS-10759 is the first small molecule drug to be developed from concept to clinical trial by MD Anderson’s Therapeutics Discovery team, which includes IACS and the CCCT. Therapeutics Discovery is a unique group of clinicians, researchers and drug development experts working collaboratively to create new treatment options, including small molecules, biologics, and cell-based therapies.

[…]

Metabolic reprogramming is an emerging hallmark of tumor biology where cancer cells evolve to rely on two key metabolic processes, glycolysis and oxidative phosphorylation (OXPHOS), to support their growth and survival. Extensive efforts have focused on therapeutic targeting of glycolysis, while OXPHOS has remained largely unexplored, partly due to an incomplete understanding of tumor contexts where OXPHOS is essential.

“Through a comprehensive translational effort enabled by collaboration across MD Anderson, we have identified multiple cancers that are highly dependent on OXPHOS,” said Marszalek.

This effort inspired the discovery and development of IACS-10759, a potent and selective inhibitor of OXPHOS. Its advancement to clinical trials was made possible by a multidisciplinary team of more than 25 scientists across Therapeutics Discovery.

“Through this collaborative, 18-month process, we identified and rapidly advanced IACS-10759 as the molecule for clinical development,” said Di Francesco. “We believe IACS-10759 will provide a promising new therapy for cancer patients.”

Cannabidiol an Effective Treatment for Seizures in Patients With a Severe Type of Epilepsy

Seizures represent dysfunctional brain activity, and the mental process compromised by them is obviously negative. This research is also probably something of a milestone in treatment of seizures — many of today’s medications aren’t that effective and/or come with gruesome side effects.

Cannabidiol (CBD), a compound derived from the cannabis plant that does not produce a “high” and has been an increasing focus of medical research, was shown in a new large-scale, randomized, controlled trial to significantly reduce the number of dangerous seizures in patients with a severe form of epilepsy called Lennox-Gastaut syndrome.

In the new study comparing two doses of CBD to a placebo, the researchers reported a 41.9 percent reduction in “drop seizures” — a type of seizure that results in severe loss of muscle control and balance — in patients taking a 20 mg/kg/d CBD regimen, a 37.2 percent reduction in those on a 10 mg/kg/d CBD regimen, and a 17.2 percent reduction in a group given a placebo.

The phase III trial was led by principal investigator and study first co-author Orrin Devinsky, MD, a professor of neurology, neurosurgery, and psychiatry at NYU School of Medicine and director of NYU Langone’s Comprehensive Epilepsy Center, and was published online May 17 in The New England Journal of Medicine.

“This new study adds rigorous evidence of cannabidiol’s effectiveness in reducing seizure burden in a severe form of epilepsy and, importantly, is the first study of its kind to offer more information on proper dosing,” says Dr. Devinsky. “These are real medications with real side effects, and as providers we need to know all we can about a potential treatment in order to provide safe and effective care to our patients.

[…]

“This landmark study provides data and evidence that Epidiolex can be an effective and safe treatment for seizures seen in patients with Lennox Gastaut Syndrome, a very difficult to control epilepsy syndrome,” adds study co-first author, Anup Patel, MD, chief of Neurology at Nationwide Children’s Hospital.

A study led by Dr. Devinsky published in last May’s New England Journal of Medicine showed a 39 percent drop in seizure frequency in patients with a different rare form of epilepsy, Dravet syndrome. Those findings represented the first large-scale, randomized clinical trial for the compound. Open label CBD studies led by Dr. Devinsky also have shown positive results for treatment-resistant epilepsies.

In April, a U.S. Food and Drug Administration advisory panel unanimously voted to recommend approval of a new drug application for Epidiolex cannabidiol oral solution, following a meeting where researchers, including Dr. Devinsky, presented their findings. The FDA will decide whether to approve the medication in late June.

“While the news gives hope for a new treatment option to the epilepsy community, more research remains imperative to better determine the effects of CBD and other similar cannabis-derived compounds on other forms of the disease and in more dosing regimens,” says Dr. Devinsky.

Creating Medicines With Less Side Effects Through a New Chemical Dividing Process

Overall, medications today have way too many harmful side effects, and so this breakthrough technological process should be helpful in reducing them. It also has the potential to “produce better medical and agricultural products, including medicines, food ingredients, dietary supplements and pesticides.”

Chemical compounds are made up of molecules. The most important molecules in biology are chiral molecules. “Chiral,” the Greek word for “hand,” describes molecules that look almost exactly alike and contain the same number of atoms but are mirror images of one another — meaning some are “left-handed” and others are “right-handed.” This different “handedness” is crucial and yields different biological effects.

Understanding chiral differences was made painfully clear by the drug thalidomide. Marketed to pregnant women in the 1950’s and 1960’s to ease morning sickness, thalidomide worked well under a microscope. However, thalidomide is a chiral drug -its “right” chiral molecule provides nausea relief while the “left” molecule causes horrible deformities in babies. Since the drug company producing Thalidomide did not separate out the right and left molecules, Thalidomide had disastrous results for the children of women who took this medication.

Though a crucial step for drug safety, the separation of chiral molecules into their right- and left- handed components is an expensive process and demands a tailor-made approach for each type of molecule. Now, however, following a decade of collaborative research, Paltiel and Naaman have discovered a uniform, generic method that will enable pharmaceutical and chemical manufactures to easily and cheaply separate right from left chiral molecules.

Their method relies on magnets. Chiral molecules interact with a magnetic substrate and line up according to the direction of their handedness — “left” molecules interact better with one pole of the magnet, and “right” molecules with the other one. This technology will allow chemical manufacturers to keep the “good” molecules and to discard the “bad” ones that cause harmful or unwanted side effects.

“Our finding has great practical importance,” shared Prof. Naaman. “It will usher in an era of better, safer drugs, and more environmentally-friendly pesticides.”

While popular drugs, such as Ritalin and Cipramil, are sold in their chirally-pure (i.e., separated) forms, many generic medications are not. Currently only 13% of chiral drugs are separated even though the FDA recommends that all chiral drugs be separated. Further, in the field of agrochemicals, chirally-pure pesticides and fertilizers require smaller doses and cause less environmental contamination than their unseparated counterparts.

Injectable Bandage Developed, Could Stop Internal Bleeding in Mere Minutes

Likely enough to be part of the new frontier in physical healing. There has long been a need for bandage-type medical applications that can heal both internally and externally.

Scientists have invented an injectable ‘bandage’ made out of a common food ingredient and nanoparticles. And not only does this material staunch bleeding stunningly fast, it also helps wounds heal more quickly.

When a person is wounded, they don’t necessarily just bleed on the outside – gunshots and other injuries often cause internal bleeding as well, which needs to be dealt with as quickly as possible.

In recent years, scientists have been coming up with new kinds of materials that can quickly plug a wound – such as this incredible sponge-filled syringe – but getting that same effect deeper in the body has remained a challenge.

Now a team of biomedical engineers at Texas A&M University has invented a totally new ‘injectable bandage’. It’s comprised of a seaweed-derived gelling agent and two-dimensional clay nanoparticles.

Together, these unlikely ingredients form what’s known as a hydrogel – highly absorbent, jelly-like substance with a super-high water content that can work remarkably well as wound dressing.

[…]

“An ideal injectable bandage should solidify after injection in the wound area and promote a natural clotting cascade,” explains biomedical engineer Akhilesh K. Gaharwar from Texas A&M.

On top of that, the team also noticed significantly improved tissue regeneration and wound healing in their treated lab samples. And, best of all, the nanoparticles used to make this hydrogel could also deliver medication to the wound site, slowly releasing it into the body as needed.

So far, the team’s hydrogel hasn’t been tested in human wounds, but its highly promising performance means it could only be a matter of time until doctors can add this injectable bandage to their arsenal.